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Chapter 1

Introduction

This thesis is devoted to statistics in extreme value theory, where the estimation
of quantities related to extreme events is of particular interest. For example in the
design of dikes, a typical requirement is that the sea wall must be high enough
so that the chance of a flood is no more than once in ten thousand years. We
consider such a flood an extreme event. Or, in insurance mathematics it is of great
interest to have statistical insight into the occurrence of large claims, due to natural
catastrophes such as floods, hurricanes, high temperatures that give potential risk
of fires of enormous proportions, etc. A common feature of this kind of events is
that not many (if any at all) events of similar size have been observed in the past.
Hence when making inferences related to extreme events, in particular one faces the
problem of estimation where information from previous ’experiments’ is scarce.

Let us illustrate our problem with an example. In Figure 1.1.a, in the real line are
indicated 1877 observations from the sea level (in cm) at Delfzijl, which is located
in the north coast of The Netherlands, measured during winterstorms in the years
1882-1991. The storm season lasts from October 1 until March 15. For more details
on the data set see Dillingh et al. (1993). Now suppose that we are interested in
estimating those sea levels (during winterstorms) that have probability .05 or .0001
of being exceeded. To start organising the information contained in the sample, we
construct the empirical distribution function F,, i.e. we put mass 1/n at every one
of the observations (where n represents the sample size throughout). This is shown
in Figure 1.1.b. Then, from this distribution the desired levels could be obtained by
making the correspondence between the given probability and the level, as shown in
Figure 1.1.b. But, it becomes clear that extra information is needed as the sea level
to be estimated becomes larger, with the most extreme cases being when the given
probability is smaller than 1/n. Figures 1.2.a display the empirical distribution on
a log-scale, i.e. the step function —log(1 — F},), which is often an appropriate scale
when one is mainly interested in the larger values of a sample.

Under rather general conditions, extreme value theory provides a class of func-
tions to fit to the distribution of the largest observations. Figure 1.2.b shows some



2 Introduction

1N M AL WY 10T
L 1 1 I 1 I 1 1 1
100 200 300 400 500 100 200 300 400 500
Sea level(cm) Sea level(cm)

Figure 1.1: a) Left: sea level (cm) at Delfzijl (the data was trend corrected). b)
Right: empirical distribution of the sea level sample.

of these functions. A real parameter, v say, comes into play which determines their
shape. To fit the appropriate function to the tail of the distribution, one has then to
decide on the shape, and moreover on the appropriate shift and scaling constants;
for instance in case of deciding for a straight line (v = 0) then one has to decide on
the appropriate slope and origin of the line to fit to the tail.

Estimators of the shape parameter, and the normalising constants are known
from e.g. Hill (1975), Dekkers et al. (1989), and many others. Their accuracy
depends strongly on the size of the sample fraction actually used in the estimation.
On the one hand one should only take the larger observations of the sample. Since
in general the extreme value model is valid only in the limit, the consequent ap-
proximation from the extreme value model should only be applied in the range of
the largest obervations. On the other hand one wants to extract the most informa-
tion from the sample, and so to have as many observations as possible. In Figures
1.2.a are examples of various models that can be fitted to the tail of the distribu-
tion. They only differ in the number of largest observations that were used in the
estimation. Then, from each model the sea level estimate is obtained by making
the correspondence between the level and the given probability, as shown in these
figures for the case .0001.

Therefore a key question in the estimation procedure is: How to choose the
sample fraction to use in the estimation? Recently there have been proposals to
obtain the optimal sample fraction in the estimation of . In part of this thesis we
address this question but from a quantile perspective, where throughout a quantile
is an unkown quantity (like the sea level we wanted to estimate above) which has
some given probability of being exceeded.

The reverse problem of estimating tail (or exceedance) probabilities is similar.
Then one can ask, given some high value: What is the optimal sample fraction when
estimating the probability of observing a value larger than the given value?
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Figure 1.2: a) Top and bottom left: step function —log(l — F},) of the sea level
sample with estimated models. b) Bottom right: theoretical models.

Consider now the bivariate setting. For example, in the design of the dikes
it is natural to consider not only the sea level but also the wave height, and of
major importance might be the interaction between these two variables for large
values of both. As before we are interested in inferences concerning large values
of both variables. Then questions of the following type are of interest: What is
the probability that some given high values of the sea level and wave height are both
exceeded?

Statistical models in multivariate extreme value theory usually consider sep-
arately the marginal structure and the dependence structure. For the first one
then one is back to the univariate setting. For the dependence structure problems
arise with the multivariate theory (e.g. from Resnick, 1987), when extremes of the
marginal variables are independent. For instance this holds for all bivariate normal
variables with correlation less than 1. We shall study a model for the dependence
part which comprises a parameter governing the asymptotic dependence of the vari-
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ables.

In the bivariate setting not so much is known about estimation in general. Hence
in this thesis, while in the univariate setting we focus on estimation and optimality
issues, in the bivariate setting we shall address the estimation problem and leave
out the optimality questions.

1.1 Extreme value theory

In the following two subsections we formalise a little some of the ideas discussed
above.

1.1.1 TUnivariate setting

Suppose that one has a sample X1, X,..., X, of independent and identically
distributed random variables from some unknown distribution function F. The
basic condition for F' in extreme value theory is, that F' belongs to the domain
of attraction of the generalised extreme value distribution, for some extreme value
index v € R (Fisher and Tippett, 1928; Gnedenko, 1943). In other words, suppose
there exist constants a, > 0 and b,, € R, such that the normalised sample maximum
converges in distribution

X1,Xo0,..., X0} —
lim F™(apx + b,) = lim P max{Xi, Xs,...,Xn} bnS

n—oo n—oo ( Qan

w) =G(z), (1.1.1)

for all x € R with G a non-degenerate function. Then G is known to be an extreme
value distribution, of the type

Gy (z) = exp{—(l +’7m)*1/7}, 1+v2>0,veR

(read e~* for (14 yx)~'/7 in case vy = 0).
Condition (1.1.1) in terms of tail probabilities gives that,

tli>rrolot{1 — F (b(t) + za(t))} =1— H,(z) (1.1.2)

for all z for which 0 < H,(z) < 1, a(t) > 0 and b(¢t) € R are suitable normalising
functions and H,(x) is the generalised Pareto distribution:

Hy(z)=1—(14~2)"Y7, 14+yz>0,veR

Formula (1.1.2) suggests, for large z,

_ -1/
l—F(m)m%{l—kwxa(f)(t)} , as t— o00.

This motivates the following estimator for the exceedance probability (e.g. Dekkers
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et al., 1989),

TN B 0
pn(k) = %max{o, (H%(k)w"Tﬂb;E))} , (1.1.3)
k

where n is the sample size, k is an intermediate sequence (k = k(n) — oo and
k(n)/n — 0, as n — o0), and a, b and 4, are estimators of a, b and ~, respectively.
In the sequel we use moment type estimators (Hill, 1975; Dekkers et al., 1989) to
estimate . The following quantile estimator can be similarly motivated,

. n) (%)%(’9)_1
(k)

These estimators can be somewhat simplified, if the underlying distribution F' is
restricted to the family of distributions which are in the domain of attraction of G
with v > 0.

Let z* be the upper endpoint of F, i.e. z* =sup{z : F'(z) < 1}, which can be a
finite number or infinity. It is known that if F' verifies (1.1.1) with v < 0 then z* is
finite, and in this case one can obtain the following estimator,

ny_ a(%)
k% An(k)

(1.1.4)

&% (k) = b( : (1.1.5)
In endpoint estimation, in addition to using moment type estimators to estimate -y,
we shall also consider a shift and scale invariant estimator of ~.

In this thesis under quite general conditions we obtain limiting distributions for
all these estimators. This is a major step in the optimal sample fraction analysis. A
common feature in all these estimators is: their variance is large if one takes in the
estimation a small number of upper order statistics, a bias component is introduced
when the number of upper order statistics included is large. A criterion to obtain
the optimal number of upper order statistics to use in the estimation, ko(n) say, is
to minimise in a special way, over k, the mean square error of the limiting random
variable. Then typically one finds

ko(n) ~ const n=2//(1=20) 5 o (1.1.6)

where p < 0 is a second order regular variation parameter, depending on the un-
derlying distribution function F. The constant in (1.1.6) depends on the variance
and bias of the limiting random variable. An interesting feature is that this asymp-
totic optimal rate does not depend on the given high value when estimating a tail
probability, or on the given probability when estimating a quantile.

1.1.2 Bivariate setting

Suppose (X1,Y1),...,(Xn,Yy) is a sequence of independent and identically dis-
tributed random vectors with distribution function F, with marginal distributions
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Fy, F,. We are interested in probabilities of the type
P(X; >u and Y; > v),

where u and v are large threshold values. Since only large values of X; and Y;
are involved, one would expect multivariate extreme value theory to provide the
appropriate framework for systematic estimation of the above probability. Namely,
the assumption that there exist normalising constants a,,c, > 0 and b,,d, € R
such that

lim F"(a,x + bp,cny + dy)

n—oo

— lim P(max{Xl,... , Xn} —bn <z max{Y1,...,Y,} —d, Sy)

an ’ Cn

= G(z,y) (1.1.7)

n— 00

for all but denumerable many vectors (x,y) . Here G is a distribution function with
non-degenerate marginals (Resnick, 1987).

We say that the maxima of the X; and those of the Y; are asymptotically in-
dependent if the marginals of the limiting distribution are independent. Unfortu-
nately, in this case the limit assumption (1.1.7) is of little help to estimate the above
probability. Indeed, this is a rather common situation. For instance, it holds for
nondegenerate bivariate normal distributions.

In order to overcome this problem, Ledford and Tawn (1996) introduced a sub-
model, where the penultimate tail dependence is characterised by a coefficient n €
(0,1]. More precisely, they assumed that the function t = P(1 - F;(X) <t and 1—
F>(Y) < t) isregularly varying at 0 with index 1/5. Then n = 1 in case of asymptotic
dependence, whereas 1 < 1 implies asymptotic independence.

As an extension to Ledford and Tawn’s sub-model, we introduce the following
assumption:

P{1—F,(X)<te and 1— Fa(Y)<ty}
@)

tlo a1 (t)

= ¢ (z,y) (1.1.8)

exists, for z,y > 0 (but z + y > 0), with ¢ positive, ¢ — 0 as ¢t | 0 and ¢; non-
constant and not a multiple of ¢. Moreover, we assume that the convergence is
uniform on {(z,y) € [0,00)2 | #2 + y% = 1}. Then, in particular it follows that the
function gq is regularly varying at zero with index 1/n, n € (0, 1], and without loss of
generality we may assume that ¢(t) = Pr{l — F1(X) <tand 1 — F»(Y) < t}. Our
assumptions imply that (1.1.8) holds locally uniformly on (0,00)2. The bivariate
normal distribution satisfies these conditions.

Under (1.1.8) we propose a new estimator for the dependence parameter 1 and
prove its asymptotic normality. Moreover we propose a procedure to estimate the
probability of an extreme set (like the one mentioned above) that works under
asymptotic dependence as well as under asymptotic independence.
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1.2 Outline of the thesis

This thesis is a collection of five articles. Each of them has its own introduction,
where the relation of the subjects with the literature is discussed. Thus in the
following we just focus on the key ideas of the contents of each chapter.

In Chapter 2 (paper Ferreira et al., 1999) we consider high quantiles and endpoint
estimation. We establish distributional limiting results for these estimators. Then
we obtain an (asymptotically) optimal number, kqg(n) say, of upper order statistics
to use in the estimation (as briefly explained in (1.1.6)).

In this chapter we also deal with the estimation of ky(n). We propose an adap-
tive bootstrap procedure, from which we obtain a consistent estimator of kg(n) in
the sense that, ko(n)/ko(n) — 1 (n — o), in probability. In order to study the
behaviour of this estimator for finite samples, we also present simulation results.

Also in Chapter 2 we apply our results, to the estimation of the endpoint of the
distribution of the total life span of a certain group of individuals.

Chapter 3 (paper Ferreira, 2002) deals with tail (or exceedance) probability
estimation. Following similar ideas as in the previous chapter, we give the limiting
distribution of the tail probability estimator and the optimal sample fraction. A
bootstrap procedure and simulation results are also considered.

The methods in Chapters 2 and 3 are rather general, in the sense that they can
be applied to most consistent, asymptotically normal sets of estimators of (v, a,b)
involved in (1.1.3)-(1.1.5).

In Chapter 4 we use the results obtained in the previous chapters to optimise the
construction of confidence intervals. We shall focus on the shape parameter and high
quantiles, for v > 0. When obtaining confidence intervals for these quantities, the
common approach that we find in the literature is to use the normal distribution ap-
proximation with a non-optimal rate. We propose to use the optimal rate, but then
additional problems arise, since a bias term with unkown sign has to be estimated.
We provide an estimator for this sign and the full programme to obtain these opti-
mal confidence intervals. We demonstrate the gain in coverage. Moreover we show
the relevance of these confidence intervals by calculating the reduction in capital
requirements in a Value at Risk exercise. Simulation results are also presented.

A further step in the optimisation of confidence intervals for the tail index 7,
would have been to use the first term in Edgeworth expansion of the distribution
of Hill’s estimator. In Chapter 4 this expansion is obtained for the optimal rate.
Although we consider this theoretical result interesting by itself, it turns out that to
be used in the optimisation of confidence intervals brings extra difficulties. Namely
the need to estimate new parameters.

In Chapter 5 we prove asymptotic normality of the so-called maximum likelihood
estimator of the extreme value index. We start from the same equations as consid-
ered in Smith (1987). We use recently obtained limiting results on the empirical tail
quantile function (Drees, 1998a).

In Chapter 6 (paper Draisma et al., 2001) we address questions related to bi-
variate extreme value theory. As mentioned before we extend Ledford and Tawn’s
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model. Then one is able to prove asymptotic normality of the estimators they
proposed for the dependence parameter 7. Moreover we propose a new estimator
and prove its asymptotic normality. The models can be used to device a test for
asymptotic independence.

Another main question addressed in Chapter 6 is the estimation of the probabil-
ity of a failure set. That is, the estimation of the probability that given high values
of both variables, these values are both exceeded. We propose a procedure that
works under asymptotic dependence as well as under asymptotic independence, and
we prove consistency of the resulting estimator.



Chapter 2

On optimising the estimation
of high quantiles of a
probability distribution

Co-authors: Laurens de Haan and Liang Peng

To appear in Statistics

Abstract. One of the major aims of one-dimensional extreme value theory is to estimate
quantiles outside the sample or at the boundary of the sample. The underlying idea of any
method to do this is to estimate a quantile well inside the sample but near the boundary
and then to shift it somehow to the right place. The choice of this ”anchor quantile” plays
a major role in the accuracy of the method. We present a bootstrap method to achieve
the optimal choice of sample fraction in the estimation of either high quantile or endpoint
estimation which extends earlier results by Hall and Weissman (1997) in the case of high
quantile estimation. We give detailed results for the estimators used in Dekkers et al.
(1989). An alternative way of attacking problems like this one is given in a paper by Drees
and Kaufmann (1998).

2.1 Introduction

In problems of coastal safety, one wants to estimate the 10,000 years return level
based on one hundred years of observations (de Haan, 1990). In finance one seeks
a Value-at-Risk which is basically also a quantile at the boudary of the range of
available observations (Jansen and de Vries, 1991; Danielsson and de Vries, 1997).

The situation is the following: we have a sample X, X5,...,X,, from some
unknown distribution function (d.f.) F' and want to estimate the quantile corre-
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sponding to a probability close to 1i.e. we want x, with 1—F(z,) =pandp < ¢/n.
This inequality means that, if we want to apply asymptotic theory and if in the
limiting process we want to maintain this essential feature, we are forced to assume
that in fact p depends on n,p = p,, and nll)rréo pn, = 0. Then there are still several

possibilities: np, — ¢ € (0,00) or np, — 0 (n — o0). In both cases purely non-
parametric methods do not work. Only if np, — oo non-parametric methods can
be successful (Einmahl, 1990). The use of models for the tail suggested by extreme
value theory gives us a sensible way of extrapolating from an intermediate quantile
to one outside the sample unless one uses one of the generalised Pareto distributions
(GPd)

Hy(z):=1-(1+ ~z)~Y7 for those z for which 1+ vz > 0, (2.1.1)

(v € R) for modelling the tail of F. The tail condition for F is:

t—o00

lim ¢ {1 _F ((1 - F)‘_(%) +xa(t)> } —1-H, () (2.1.2)

for all z for which 0 < H,(z) < 1 where a(t) is a suitable positive function. This
means for the quantile function that for z > 0

ey =BG -A-F)(G) _ a7 -1
t—o0 a(t) 5 i

For our problem this means

k
k n (7o) —1
1-F)(p)~(1-F)" (- )
(1= F)(p) » (1= F)(;)) + ()=
i.e. an extreme quantile is linked to an intermediate quantile (which can be estimated
via the empirical d.f.) by using the GPd approximation. The extreme quantile
estimator based on this relation is

n) (%)’?n,l(k) —_ 1
'a’n,l(k)

j:n,l(k) = Xn—k,n + CAII(E
where X1, < Xy < --- < Xp, are the order statistics and a;1(n/k) and y,,1(k)
suitable estimators for a(n/k) and v (Weissman, 1978; Smith, 1984; Boos, 1984;
Joe, 1987 and many others). A boundary case is v < 0 and p = 0. Then the same
expression (with p, — 0) can be used as an estimator of the right endpoint of the
probability distribution, in the same GPd set-up.

The choice of k (or rather n — k, the index of the order statistics from where
on the GPd approximation is believed to be valid) is crucial for the accuracy of the
procedure. The optimal value depends on the underlying distribution and is a result
of balancing variance and bias components. In this paper we present a bootstrap
procedure to obtain this optimal value adaptively. The method is an extension of

(2.1.3)
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what we used for obtaining the optimal number of order statistics in estimating v
(Danielsson et al., 2001 and Draisma et al., 1999). The paper Hall and Weissman
(1997) presents a (similar but different) bootstrap method for solving the same
optimality problem, not for the quantile but for the exceeding probability of a high
level which is similar. Unlike that paper, we do not assume any of the parameters
known. Also our conditions allow for much smaller values of p,. The quantile
problem is more common in applications than the inverse problem of exceedance
probabilities of a high level.

We restrict ourselves to the range v > —%. This range is most important in
applications and in this range it is most efficient to choose a sequence k = k(n)
in (2.1.3) that goes to infinity with n. Also, since we consider tail properties, we
have to limit ourselves to sequence k(n) = o(n),n — oo. Hence we are dealing
with intermediate sequences k(n) (i.e., the corresponding order statistics X,_g p
are intermediate):

k(n) = oo, k(n)/n = 0 (n = 00). (2.1.4)
The main idea is the following. We seek

ko(n) := argirlzf as. E(&n1(k) — z,)? (2.1.5)

where as. FE means the asymptotic expectation (according to the limit distribution,
cf. Theorem 2.2.1 and the discussion thereafter) and k ranges from, say, logn to
n/(logn) (this expresses the restriction to intermediate sequences and includes the
optimal one). Since we are looking for an adaptive method for optimisation and
since z,, and the averaging probability measure in (2.1.5) are unknown, we replace
them with sample analogues. So we consider

B (&n,1(k) = #n,2(k)" L, y(h)=2n (k) <)y 0 > —1/2 (2.1.6)

where &, 1(k) is as before, E,, denotes averaging with respect to the empirical d.f.
and

(£ yin2 (k)

N ~ T\ \np,
-'L'n,Q(k) = Xn—k,n +a2(—) P ’,? Q(k)

. (2.1.7)

with aa(n/k) and 4,2(k) alternative estimators.

The reason why we put the indicator function 1 in (2.1.6) is to ensure the
convergence of the mean square error (mse, say). For details see Draisma et al.
(1999). Since § > —1/2, by the asymptotic normality the condition expressed by
the indicator function will be satisfied most of the time.

The quantity (2.1.6) depends on the sample only and can be approximated using
a bootstrap procedure where the bootstrap sample size has to be chosen of lower
order than n in order to avoid unwanted extra randomness. Solving the optimisa-
tion problem for (2.1.6) makes sense since the value k§(ny) minimizing (2.1.6) is
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asymptotically related to the value ko from (2.1.5) and in fact with the help of a
second bootstrap we can get kg from k§(ny).

For technical reasons (cf. Lemma 2.4.1) we have to exclude the case v = 0 and
also the cases where the convergence in (2.1.2) is very slow (p = 0, c¢f. Lemma 2.4.1).

The procedure for quantile and endpoint estimation is explained in Section 2.2
which also contains the main results. The most general setting is accounted in
Section 2.2.1. We also consider two special cases separately. In quantile estimation,
if one restricts to the case v positive, the asymptotic results may be simplified. This
is analysed in Section 2.2.2. All these results use the moment estimator (Dekkers et
al., 1989) or simplified versions of it to estimate . In Section 2.2.3 we use instead
a location-scale invariant estimator of - in endpoint estimation. In Section 2.3 we
present some simulation results and an application. Finally in Section 2.4 are the
proofs of the results of Section 2.2.

Our methods could be applied to most consistent, asymptotically normal, sets of
estimators. However we work out the details only for the estimators used in Dekkers
et al. (1989).

2.2 Main results

2.2.1 Results for high quantile and endpoint estimation

We start by explaining the method in detail. Then we shall state the precise
conditions and present the formal results.

We shall use explicit estimators for a(%) and v which are as follows. Define for
J=123

k—1
MT(LJ) = %Z(log ani,n —IOg ank,n)j, (221)
=0
(1)y2
N o 1 1 (Ma')*
’Yn,l(k) T Mr(r, ) +1- 5(1 - M7(L2) ) > (2'2'2)
N /1 (2) 2 M,(II)M,(IQ) 4
7”,2(]{") = My /2 +1- g(l — W) , (223)
. n X
GI(E) = Xp koM /01 (K)) (2.2.4)
~ N «
GQ(E) = ank,nMﬁ,,l)/pl ('Yn,Z(k)) (225)

where 4,1 (k) and a, (%) are the estimators in (2.1.3) and 4, 2(k) and as(%) the
alternative estimators in (2.1.7), and p;(y) = (1 —v_)~!. We denote min(~,0) by
~v— and max(y,0) by v4.

Step 1 Select randomly and independently n; times (n; = O(n'=¢), 0 < e < 1/2)
a member from the set {X;,X5,..., X, }. Indicate the result by X7, XJ,... X .

Form the order statistics Xy, < X3, <---< X7 . and compute the quantities
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(2.1.3) and (2.1.7) from (2.2.1-2.2.5) on the basis of these order statistics.
We denote the resulting quantities by 4;;, ;(k), 45, 2(k), @7 (n1/k) and a3(n1/k),
#y,1(k), 25, 2(k) for k=1,2,...,n; — 1. Form

~ A%

Gy i = (&5,1(K) — xn,z(k))21(\@;’1(/9)_@;,2(/9”5195)

on the basis of these bootstrap estimators.

Step 2 Repeat step 1 r times independently. This results in a sequence gy , .,
k=1,2,...,n —land s =1,2,...,r. Calculate

T
1 .
r qn1 ,k,s*
s=1

T
Step 3 Minimize %Zq;hk,s with respect to k but reject values which are very
s=1
small or very near to n; (the statement of Theorem 2.2.3 will be valid if k ranges
from logny to n/logn). Denote the value of k where the minimum is obtained by

Step 4 Repeat step 1 up to 3 independently with the number n; replaced by
na = (n1)?/n. So ns is smaller than ny. This results in kg (n2).

Step 5 Calculate

. 2 h(FF(k), A, (k), ol (kg
ks (n2) (3 (k). An (k), P, (K5))
with 4;7 (k) and 4,, (k) any consistent estimators of 4 and ~_,
1 *
Py (KG) = 08 kg (1) (2.2.7)

—2logni + 2log kg (nq)

and the functions h and h from Theorems 2.2.2 and 2.2.3 below respectively.

This ko (n), which is obtained adaptively, is asymptotically as good as the optimal
number of order statistics in (2.1.5).

Now in order to be able to present our main results we have to state the condi-
tions.

Suppose that the underlying d.f. F' is in the domain of attraction of an extreme
value distribution (or equivalently that the observations above a large threshold
have an asymptotic GPd distribution). We formulate this condition analytically in
terms of the quantile-type function U := (:15)*:

. Ulte) -U@) 27 -1
Jm, a(t) Ty (2:28)
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for all positive z, where a(t) is a suitable positive function. We shall need a second
order refinement of this relation which reads as follows: there is a function A(t) — 0
with constant sign near infinity such that for all > 0

- 1[27P -1 27 -1
lim —2®) r =22 -2 (2.2.9)
t—ro0 A(t) pl v+p ¥

with p < 0. For the final result we shall have to require p < 0, a(t) ~ ¢1t” and
A(t) ~ E2t?(t — 00). Note that (2.2.9) with v + p # 0 is equivalent to

t7 —

1
+ e’ +o(t"P) with ¢ >0, c#0  (t— ).
(2.2.10)

Ut)=co+c1

So (2.2.9) in fact motivates condition (2.2.10), which is used in Theorem 2.2.2. In
the next theorem we give asymptotic normality under the more general condition
(2.2.9).

In the sequel we shall need repeatedly the function A(t) defined by

A(t) ify<p
T+ — 5% if p<y<0
A = or (0 <y < —pand limy o0 (U(#) — a(t)/7) #0)
ory=—p

pA®)/(v+p) Hv>—p
or (0 <y < —pand limy, o (U(t) — a(t)/v) =0).
Then |A(t)| € RV, p' <0 (cf. Lemma 2.4.1). Let a,, = k/(np,).

Theorem 2.2.1. Suppose U satisfies (2.2.9) and U(oco) > 0. Let k(n) be an inter-
mediate sequence and assume p < 0, v # 0, v # p and np, — ¢ (finite, > 0), as
n — 00.

(1) If A(2) Vk = X € (—00,00) and loga,/vk — 0 then
(a). (v>0)

R(n, ) (&1 (k) = 23) = - ( 7k (1 (k) — )

%) a3 log an

converges in distribution to a normal r.v., N say, with mean \\/cs and
variance cs,

(b). (v<0)
R(n, k) (&n,1 (k) — z5) == (#n,1(k) — z0)

converges in distribution to a normal r.v., N say, with mean \\/cg and
variance cs.
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(2) If |A(2) [VEk = 0o and A (2)loga, — 0 then

(a). (v>0)
o L Y N _
R(n, k) (&n,1(k) — z,) := yi () a (2) allogan (Zn,1(k) —zn)
converges in probability to N = \/cq,
(b). (v<0)
Rl K) @) = a0) = 1o (na8) = )
k k

converges in probability to N = \/cqg.
The constants c3,cq4,c5 and cg are given in Theorem 2.2.2.

Remark 2.2.1. Theorem 2.2.1 was proved under somewhat different conditions in
de Haan and Rootzén (1993).

Remark 2.2.2. (i) A(2)vk - XA € (-00,00) and loga,/Vk — 0 imply
A(%)loga, — 0; (i) |4 (2) [VE = 0o and A (%) loga,, — 0 imply log a,,/vk — 0.

Remark 2.2.3. In fact the conditions on loga,, are needed only when vy > 0.

Under (2.2.10) we have that |[A(t)| ~ /@& t*, & > 0, as t — oo. Now we
show that it follows from Theorem 2.2.1, that the best rate of convergence of
(&n,1(k) — z,) is achieved in the case (1.) with A # 0. For instance let v < 0.
Then, under (1.) and if A # 0, k is of order n~2¢'/(1=2¢") (say ko) and the rate of
convergence R(n, ko) is of order kg +1/2 /n7. Now let k1 be other sequence for which
(1.) holds but with A = 0. Then k1 = o(ko), hence R(n, ko)/R(n, k1) is asymptotic
to (ko/k1)"*T'/2, which goes to infinity if ¥ > —1/2. Also notice that if ks is such
that |A(n/ks)|v/k2 — oo, then the ratio of the rates R(n,ko)/R(n, k) is asymp-
totic to kJ T2/ (k) n—r") = (ko/k2)7+plké/27p, /n~"", which again converges to
infinity. The case v > 0 is similar.

Also from Theorem 2.2.1, we have that (2,1 (k) — ) is asymptotic to R~ (n, k)N,
where N is a r.v. In the next theorem we seek the optimal sequence ko(n) such that
the mse of the approximating r.v. R~!(n, k)N is minimal. Hence

(a) (v>0)

a? (2) a2 log? ay, 2p’
ko(n) = arginf (%) - & {%Jrcmg (%) } (2.2.11)

(b) (v <0)

ko(n) = a,rgir,%f a® (%) {%5 + c6Ca (%)Zp,} . (2.2.12)
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Next we need to get rid of the condition loga,/ Vk — 0, since this is a condition
on k and not only on p,. So in order to stay in case (1.) of Theorem 2.2.1, so that
the explicit formulation (2.2.11) holds, we require a condition on p,, alone, which is

log p, = o(n =Ty ).
For the rest of the paper we shall restrict ourselves to intermediate sequences
k(n) for which (n/k)? vk converges to a finite or infinite constant.

Theorem 2.2.2. Suppose U satisfies (2.2.10) and U(oo) > 0. Assume p < 0,
¥ > =1/2, v #0,v# p, v # —p, npn — ¢ (finite, > 0) and logp, = o (n;;p,)'
Then ko = ko(n) (cf. (2.2.11)-(2.2.12)) satisfies

c ﬁ =20

(C452(i2p’)) n1—2p" fOT‘ ’)/ > 0

1 1
—2p
cs 142y 1-2p"7 =P
(CGE2 e ni-2p for v <0

ko(n) ~

’
—2p
1—2,7

=:h(v4,7-,p) n7=2

with
7 2
c3 = 6—203(7+) =0+ 1)
1
2
o~
Cy = _204(’Y+apl) =
51
(v++p' —v+0)? if (lim U(t) — 2 —0and0 <y < — )
A= e " R
ory> —p
7 2 122
('y++2p(1—_~2+1)/1—p ) if (limg_yoo U(t) — %’? #0and0 <y < —p)
. (1) (1 —7_)%(1 = 3y_ +4+?)
5 = 5 ) =
(A= 29-)(1 = 3y-)(1 —4y-)
(1_7_)2‘012 Zf <
= cq( "= YL(1=7-—p")2(v-+p")2(1=2v-—p") TP
ce = cg(y—,p) = (372 —y— =293 429" —2y_p' =2 p' —p'?)?

YE(A—y_)2(1———p’)2(1-27_—p')? if p<v<O0.

Remark 2.2.4. Since p is not known, one could alternatively require log p,, = o(n°)
for all € > 0.
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Corollary 2.2.1. Under the conditions of Theorem 2.2.2,
(1) ifvy>0
Vo
n ko ) k
o(#) () tos ()

converges in distribution to a mormal r.v. with variance c3 and mean

Vaad (h(vs,7-, ) 7272 and,

(Zn,1 (ko) — )

(2) ifvy<0

vk .
a(n/ko) (Zn,1(ko) — )

converges in distribution to a mormal r.v. with variance c; and mean

Vaets (h(ye, v, o)) 2072,

Theorem 2.2.3. Assume the conditions of Theorem 2.2.2. Then, as n — oo (and
r = r(n) — oo, with r the number of bootstrap repetitions, c.f. Step 2 above), for
ko(n) as in (2.2.11)-(2.2.12)

with 4+ (k), 4, (k) any consistent estimators of v and v—, pl, (k3) as in (2.2.7) and
the function h given by

by, v, 0') =

(6462( 2p)) forv>0
( 12y 65)1_” for v <0

—2p'—2~ ¢CoCs
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where

_ _ 1 R

e = T3(y4) = Z(l +75)

_ _ ’+ _ 12

ca = Ty, p) = (p 4(?“_ p'ﬁ;ﬁ_p)

g = Ty(y )= — T )21 — 6y + 3572 — 7872 + T294)
4yt (1= 29-)(1 = 3y-)(1 —4y-)(1 = 57-)(1 = 67-)

¢ = Co(7-,p) =

(1—7)%"
Ay (1 =y = p")2(1 = 27— — p')*(1 = 3y — p')?
—24+ 12y_ — 2292 +12+3 +5p' — 22v_p' + 2172 p' — 6p'> + 127_p'% +2p"°
2721 =7 )1 =7 = p)(1 =27 = p)(1 = 3y- — ')
2 — 14y_ + 3492 — 3473 + 1292 —6p' + 30y_p' — 4672 p' + 2293 p' + 6p'°
22 (1 =7 )1 =7 = p)A =27 = )1 =37 = p)/(1 = 7)1 —27-)
N —18y_p'? + 1292 % — 2p° + 29_p"°
272 (1= 7)1 —v- = p)(1 = 27— = p)(1 = 37— = p')y/(1 = 7-)(1 = 27-)
if p<~vy<O.

ifvy<p,

Moreover the result of Corollary 2.2.1 holds when ko(n) is replaced by ko(n) through-
out.

Remark 2.2.5. Since the order of magnitude is the same as in the case of mini-
mizing the mean square error of the moment estimator 4, 1(k) (only the constant
differs and this factor can be estimated consistently), we could use the bootstrap
procedure for one of them in order to get the optimal value for the other.

Next we turn our attention to the estimation of the right endpoint zy of the
probability distribution when v < 0. Define (cf. Dekkers et al., 1989)

ar (%)
&o,1 (k) := Xn—pyn — ——= (2.2.13)
n,l(k)
where
- 1, ()
Fna(k):=1-5(1 - Ve )~ (2.2.14)
We seek

ko(n) := argir]%f as. E(&0,1(k) — x0)? (2.2.15)
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where as. E/ means the asymptotic expectation, according to the limit distribution.
Similarly as before, from the proof of Theorem 2.2.4 we have that, for A(n/k)vk —
A€ (—OO, OO),

VE
a (%)

converges in distribution to a normal r.v. with mean A,/cg and variance c7, and
if |A(n/k)|Vk — oo it converges, in probability, to \/cs. Moreover, under the
conditions of Theorem 2.2.4 the best rate of convergence is attained when A # 0.
Hence we shall have

(£0,1(k) — o)

i n\ [c _ /n\2
ko(n) = arglrl:f a’ (E) {i + cgéy <E) } . (2.2.16)
Theorem 2.2.4. Suppose U satisfies (2.2.10) and zo = U(c0) > 0. If p < 0,

—1/2 < v < 0 and v # p, the value ko(n) of k minimizing the asymptotic second
moment of £01(k) — zo (cf. (2.2.16)) satisfies

1
1 —+ 2’)/_ Cr T-2p" —2p’ ’ —2p'
k ~N|— 1-2p" —: _, 1-2p7
0(”) (_2p/_2,y 6208) n ’ g('}’ p)TL s
with
e = enlr) (1=7)(L=3y- +492)
Y1 =2y-)(1 =37 )(1 —4y-)
(27— =672 +473 +p' —57y_p +672 p' +2v_p'>)2 .
cs := cs(7— p') — 74_(1—7——g’)2('y—+2p')2(1—2'y——p’)2 ify<p
(1-3y-4+27y2+v-p") if p<<O.

YE(I—y——p")2(1-2v-—p')?

In order to construct an adaptive estimator for ko(n) we consider the following
alternative estimator for zg,

R as (%)
20,2(k) = Xp—kyn — == (2.2.17)
n,Z(k)
where
. 2 MOMP

Now for %, (k) we apply the same bootstrap procedure as described before for
5,1 (k), but with the constants h(¥,} (k), %, (k), py,, (k3)) and h(7;f (k), 35 (k), pr,, (K5))
replaced by g(3; (), #, (k&)) and g3 (k), fl, (k3)) respectively.
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Theorem 2.2.5. Under the conditions of Theorem 2.2.4, as n — oo (and r =
r(n) = o0), ko(n) as in (2.2.16) satisfies

lim KoM _
n—oo ko (TL)
in probability, where
o (B3 (1)) 9(5n (K), P, (KG))

ko(n) =

ks(n2)  g(4m (k), pr,, (K3))

with 4, (k) any consistent estimate of v_, py,, (k5) as in (2.2.7) and the function g
given by

— 14 29_ Cr =57
! = B ———
T (—2/)'—27 5258>
where
_ or(r.) (1 —~_)%(1 —6y_ + 3592 — 78y +729*)
cr = Cr(v-) =
! ! 4T (1T =29)(1 =37 ) (1 — 4y )(1 - 5y )(1 - 67_)
-1 1\2
o = Ts(rp): (- =1)p")

T Aol =R -2y - PR3y = )

Moreover when, replacing ko(n) by ko(n) the same asymptotic normal distribution is
obtained.

2.2.2 Results for quantile, positive y

Suppose we know, or assume, v > 0 and want to estimate a high quantile.
Confined to this situation, in this section we present the required asymptotic results
to apply the bootstrap procedure as described in the last section. To estimate the
quantile we use

L Aty (k)
5%:,1 (k) == Xnkn (J) where A+ (k) == MY (2.2.19)
and let
At o (k) M2
a?;t,z(k) =Xp_kn (%) where fAyT't2(k) = 2" (2.2.20)

be the alternative quantile estimator.

Theorem 2.2.6. Suppose the second order condition (2.2.10) holds for v > 0, p <
0, v # —p and U(oco) > 0. Assume np, — ¢ (finite, > 0) and logp, = o(n®) for
€>0, asn — oo. Then

At 1— 1\2 1/(1_2pl) P ot
o)~ (LGZEE) T =t
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where ko(n) := arginfy, as. E (2] (k) - mn)2.

Theorem 2.2.7. Under the conditions of Theorem 2.2.6, as n — oo (and v =
r(n) = 00), ko(n) satisfies

. ko(n) _
P o)
in probability, where
2 (k5 (n1))* 1 (K), i, (k)

Foln) = st) 16T (), 2t (he)

with 4;F (k) any consistent estimate of v, pl, (k3) as in (2.2.7) and the function

given by
~ 1 )4\ 1/(1=20)
1(v4,p') = (%) :
—zpc2

Moreover when replacing ko(n) by ko(n) the same asymptotic normal distribution is
obtained.

2.2.3 Results for endpoint with a shift-scale invariant estimator of v

In this section, for the endpoint estimator we still use the same structure as in
(2.2.13). Let

as(%)

Tos(k) = Xp—kn— .
Foal®) T Aa®)

(2.2.21)

The main difference now, lies in the quantities MY (cf. (2.2.1)). We propose to
use instead

k—1
. 1 ; .
NY = - ;ZOj(Xn_,-,n — Xpkm), j=1,2,3. (2.2.22)
Since 7 is negative we shall use

- B 1, (N2
Fg(k) = 1=5(1- N ) (2.2.23)

to estimate the extreme value index. Note that (2.2.23) is shift and scale invariant
whilst the extreme value index estimators used in the previous sections are just scale
invariant. In what concerns the estimation of a(7) similarly we propose

CAl3(E) = N/ p1 (3, 5(k))- (2.2.24)
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In what regards the alternative estimators necessary for the bootstrap procedure
just apply the same scheme as in Section 2.2.1 for the endpoint. Substitute in

(2.2.18) Mr(bj), j=1,2,3by NT(lj), J =1,2,3, respectively, to get 4, ,(k). Substitute
in (2.2.24) 4, 3(k) by 4, 4(k) to get a4(3), to finally obtain £ 4 (k).

We now state the main results. Note the resemblance with Theorem 2.2.4.
Theorem 2.2.8. Suppose U satisfies (2.2.10) and zyp = U(o0) > 0. If p < 0 and
—1/2 < v <0, the value ko(n) of k minimizing as. E (&o,3(k) — z0)? satisfies

1
142y ¢ -2 n1__2gp,,’/ _
—2p — 2y_ Cacy

ko(n) ~ (
The constant ¢y is given in Theorem 2.2.4 and
R s 672 + 472 +p—57_p+6y2p+2y_p?)?
® YA -7 —p2(- +p2(1 -2y —p)?

Theorem 2.2.9. Under the conditions of Theorem 2.2.8, as n — oo (and r =
r(n) = o), ko(n) satisfies

(2.2.25)

lim R _y
n—oo kg (n)

in probability, where

o (k) g (K)o (R))
ho(n) = s ma) 3om (), p (52)

with 4,, (k) any consistent estimate of y_,

log kg (n1)
—2logni + 2log kg (n1)

Py (k();) =

and the functions g and g from Theorems 2.2.4 and 2.2.5 respectively, with cg re-
placed by c§ as in (2.2.25), and &, replaced by ¢3. Moreover when replacing ko(n)
by ko(n) the same asymptotic normal distribution is obtained.

2.3 Applications to simulated and real data

2.3.1 Simulation results

The simulations are based on the following three types of d.f.’s.

Generalised extreme value distribution

Let G, (z) = exp{—(1 + v2)~*/7}, 1 + vz > 0. In accordance with the conditions
in the previous theorems, in the following we exclude the cases v = 0,—1. The
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function U(t) = F*< (1 —1/t) is given by U(t) = ((—log(1 = 1/t))™" = 1) /v, t > 1,
where lim;_, o, U(t) = U(o0) = =1/v if ¥ < 0 and U(o0) = o0 if v > 0. Expanding
the function U (), if v # 1,

-1 1
= -t 4+o(®"!) as t— o0,
vy 2

U(#)

and if y =1,
U(t)——1+(t—1)—§+o(t—1) as t — o0
2 12 '
Hence (2.2.10) holds with (p,co,c1,¢2) equal to (—1,0,1,—1/2) if v # 1 and
(—2,-1/2,1,-1/12) if y = 1.

The functions required in the first and second order conditions in terms of U (t)
(see (2.2.9)) may be taken as a(t) = c1t? = t7 and, A(t) = p(y + p)cat?/c1 =
(y—1)t1/2if y#1and t2/6if vy =1, as t = oo. The function required in the
second order condition for log U(t) (cf. Lemma 2.4.1) may be taken as (t — o)

Aty =251 ¢ Y < -1
=yt ,—1<y<0
At)y=< v- 5((?) ~ % tTr=t"" ,0<y<1 (2.3.1)
Y- g~ st =1
pA() _ £ v > 1.

Note that lim;_,oo (U (t) —a(t)/v) = —1/7vif vy <0, -1/7yif0 <y < 1, =3/2ify =1
and —oo if v > 1. Hence

(y-1?%/4 ,y<-1
,72

,—1<y<0

Gy = 1 ,0<y<1
9/4 i y=1
1/4 ;7> 1

Reversed Burr distribution

A random variable (r.v.) Y is said to have Burr d.f. with parameters 8, A\ and
Tif Fy(y) =1-8YB+y)* y >0, B,\,7>0. Let X = —Y~!. Then X is
said to have a Reversed Burr distribution, say RBg,» -, with d.f. given by Fx(z) =
1-8Y(B+ (—z) ™)}, <0 =m0, B,\,7 > 0. In accordance with the conditions
in the previous theorems, in the following we exclude the case 7 = 1. In order to
properly use simulated data from this model it must be shifted by a positive constant,
say a, so that zo = a > 0. Therefore we consider U(t) = a — g~ Y/7(t/* —1)~1/7,
t > 1, and lim;_, o U(t) = U(c0) = a. Expanding this function we get, as t — oo

Ut)=a—-p"""+

ﬂ—l/T t_l/)‘T -1 ﬂ_l/T —1/AT—1/A —1/A7—=1/X
At =1/Ar T t to (t ) )
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Hence (2.2.10) holds with (v, p, co, ¢1, ¢2) equal to (=1/Ar, —=1/X, a=B~/7, 3=1/7 /A,
—p-T /7). The functions required in the first and second order conditions in terms
of U(t) may be taken as a(t) = f~/7t=Y/*"/\r and A(t) = (1 + 7)t=Y/}/Ar, as
t — o0o. The function required in the second order condition in terms of logU(t)
may be taken as (t = 00)

_ L7 -1/
Aty=1{ /} Tl
E YA >,

aAT

Hence

. 1+7)?/(A)? ,7<1
2= { B7)(arr)? 7> 1

Cauchy distribution.

Let X with d.f. Fx(z) = (arctanz + 7/2)/m, z € R. Then U(t) = tan(n/2 — «/t),
t > 1 and lim;_, o U(t) = U(00) = co. Expanding this function we get

1
Ut)=1/m+ =(t—1) - gt—1+o(t—1) as t — 00,
™

and so (2.2.10) holds with (v, p,co,c1,c2) equal to (1,—2,1/m,1/mw,—n/3). The
functions required in the first and second order conditions in terms of U (t) may be
taken as a(t) = t/m, A(t) = 2n%t=2/3, as t — 00, and the function required in the
second order condition in terms of log U(t) may be taken as A(t) = 4n2¢t—2 /3, as
t — oco. Note that lim;_, o (U(t) — a(t)/vy) = 0. Hence & = 167*/9.

Simulation results

We present results for the following distributions: G_ 25, G5, G1.5, Cauchy and
RBy 4,2. For quantile estimation, for each df we estimate the quantile corresponding
to a tail probability of p,, = 1/(nlogn).

In Tables 2.1 and 2.2 are bootstrap results on endpoint and quantile estimation
(based on the results of Section 2.2.1), based on 200 independent samples of size n
= 2000 from RBy4 4,2 and G_ 25, respectively. We show the bootstrap estimates of
ko and zo (Table 2.1) and, kg and z,, (Table 2.2), for several choices of ny, namely
n1 = 500(250)1750. A general feature, which can be observed in these tables, is
that the mean of the bootstrap estimates and respective mse (in the tables we show
the square root of the mse), are quite stable along n.

We compare the performance of the bootstrap estimates with the true values,
calculating the correspondent ratios. In Table 2.1, the ’true’ value of ky was obtained
from minimizing, over k, the sample mse of (Z,(k) — o), based on the same 200
independent samples used to obtain the estimates in the table, and where zq is the
true value of the endpoint. The 'min rootmse’ is the average over these samples of
(2n (ko) — z0)%. Similarly for the other tables.
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ni n2 ko f)o (wo = 0)
(Interval (Interval mean  mean/ st. mean rootmse rootmse/ %
to look to look true dev. min success
for kg(n1)) | for kj(n2)) value rootmse
500 125 110.9 2.3 85.7 .00 .04 1.33 90
(10,400) (10,100)
750 281 121.8 2.5 77.5 .00 .04 1.33 74
(10,600) (10,224)
1000 500 121.8 2.6 84.3 .00 .04 1.33 74
(10,800) (10,400)
1250 781 119.9 2.6 87.4 .00 .04 1.33 70
(10,1 000) (10,624)
1500 1125 122.8 2.6 144.0 .00 .05 1.33 70
(10,1 200) (10,900)
1750 1531 103.8 2.2 132.5 .00 .05 1.33 64
(10,1 400) | (10,1 224)

Table 2.1: Simulation results, bootstrap endpoint estimation with 200 independent
samples of size 2000 from RBy 4> and r = 200 (see text for details).

As mentioned in Section 2.2.1, we reject values of kj(n1) (and of k§(n2)) which
are very small or very near to n; (repectively ns). In all simulations (except when
mentioned otherwise) we used as a lower bound the value 10. For the upper bound
in all cases, except BBy 4,2, it was determined according to the data: for each d.f. it
is such that as many positive values as possible are used in the bootstrap samples.
In fact all samples have approximately half of positive values, so this upper bound
does not restrict our estimation. Indeed k(n1) and k& (n2) are in general much lower
than half of the respective bootstrap sample size. For the particular case RBj 42
notice that the original samples are constituted of negative values. In this case we
shifted the data by 16, which is the smallest integer such that all values are positive.
Then we just took for the upper bound .8 n;, that is, a large enough value.

In what concerns the number of bootstrap resamples, 200 replications (denoted
by r = 200) seem fairly enough in all cases.

As shown in the tables, not all simulations worked well. Mainly the abortions
were because ki(na) > kg(n1), a situation we classified as inconsistent. For a few
times we also observed other reasons like k(n) = 0, ko(n) exceeds the number of
positive observations or 4 > 0 on endpoint estimation.

In Table 2.3 we consider samples of size 10 000. We give results for: (1) quantile
and endpoint estimation based on the bootstrap algorithm described in Section 2.2.1;
(2) endpoint estimation based on the bootstrap algorithm described in Section 2.2.3.
In what concerns the bootstrap parameters, for n; we always considered 3981, which
corresponds to n; = n' ¢ where € = .1. For the number of bootstrap resamples we
set, as before, r = 200.

In general we observe that our estimates of quantile and endpoint are reasonably
close to the correspondent optimum. For quantile estimation, v < 0, the estimates
of ky are not so stable as for the cases when v > 0. We show the case G_ 25 where
we observe a larger variability of the estimates of kg.

In Table 2.3 the reader also finds simulation results based on the same samples
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ni no ko ﬁn (zn = 3.77)
(Interval (Interval mean  mean/ st. mean rootmse rootmse/ %
to look to look true dev. min success

for kg (n1)) | for kg(n2)) value rootmse

500 125 303.0 1.2 275.8 3.59 .56 1.75 60
(10,260) (10,54)

750 281 347.6 1.3 281.1 3.54 .63 2.0 61
(10,392) (10,139)

1000 500 323.8 9 276.8 3.61 .55 1.7 65
(10,547) (10,261)

1250 781 337.6 .9 296.1 3.58 .58 1.8 68
(10,691) (10,420)

1500 1125 299.4 .8 278.9 3.55 .54 1.7 68
(10,837) (10,624)

1750 1531 294.3 .8 271.4 3.60 .55 1.7 62
(10,994) (10,853)

Table 2.2: Simulation results, bootstrap quantile estimation with 200 independent
samples of size 2000 from G_ »5 and 7 = 200 (see text for details).

as before, but taking simply k = [/n] for the intermediate sequence to use in the
estimation.

Simulation results regarding quantile estimation, positive gamma, are omitted
since they follow a similar trend.

It seems that the methods do not give satisfactory results for samples of size
under, approximately, 2 000.

2.3.2 Application

The goal is to estimate the right endpoint of the distribution pertaining to the
following data sets. The data consists of the total life span (in days) of the people
who died as residents in the Netherlands, which were born between the years 1877
- 1881 (included) and were still alive on January 1, 1971. Evidence has been given
to support that the distribution of the population under study has a finite endpoint
and the extreme value index is between —1/2 and 0; for a brief discussion we refer
to Aarssen and de Haan (1994), where the same samples are analysed after suitable
preparation for statistical analysis. The sample size is 10391. Results are also
displayed for the women and men data separately, corresponding to samples of size
6260 and 4131, respectively.

In Table 2.4 are the results obtained from the bootstrap endpoint estimation, as
explained in Section 2.2.1. As in the simulations discussed previously, for the choice
of n; we used € = .1, hence ny = n'?. For the number of bootstrap resamples we
used r = 500. Below each bootstrap sample size, n; and ns, in round brackets, is
the range taken to look for the optimal kg(n1) and kg(n2), respectively. As for the
lower bound we always took 10, as in simulations. For the upper bound we took
8n;, i =1,2, also the same as in simulations when the data was all positive.

Recall that the bootstrap uses a initial estimate of gamma to calculate kg. The
initial estimates given in the table were obtained from the diagram of estimates,
that is, plotting the estimates of v against k. We consider three possible choices for
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QUANTILE (Based on the results given in Section 2.2.1.)

ko &n (ko) za([vn])
mean mean/  st. dev. mean mean/ rootmse rootmse/ % mean mean/ rootmse rootmse/
true value true value min rootmse  success true value min rootmse
G5 588.0 .96 637.8 797.7 1.32 426.8 1.19 64 789.9 1.30 486.6 1.36
Cauchy | 1243.4 1.04 673.3 | 3.55x10% 1.21  1.98x10% 1.34 81 4.18x10% 1.42  4.54x10% 3.09
Gis 1075.0 1.13 595.0 | 3.04x107 1.63 2.64x107 1.33 81 3.88x107 2.08 7.38x107 3.72
G_ .25 928.3 92.83 1050.2 3.71 .98 .29 1.95 60 3.79 1.01 .18 1.22
T o5 1050.3 .58 1126.1 3.71 .98 .30 1.99 74 3.80 1.01 .19 1.25
ENDPOINT
ko &o(ko) zo([vn])
mean mean/  st. dev. mean mean/ rootmse rootmse/ % mean mean/ rootmse rootmse/
true value true value min rootmse  success true value min rootmse
G(f.)% 1724.6 1.33 922.6 3.77 94 .33 1.52 95 4.21 1.05 1.31 6.04
RB{'), | 306.2 .88 287.1 .00 e .01 1.15 69 .00 e .02 1.22
RB{), | 7455 2.15 741.6 -.01 e .02 1.84 68 .00 . .02 1.22

* With lower bound equal to 20.

** Not defined since the true value equals zero.
(1) Based on the results given in Section 2.2.1.
(2) Based on the results given in Section 2.2.3.
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intermediate initial final

size of the bootstrap results estimates bootstrap results
bootstrap resamples | ki (n1) (k3(n1)/n1) | ki(n2) (ki(n2)/n2) | Ama ko(n) (ko/n) | An,a | &0
men+women sample

n = 10391
n1 = 4120; ng = 1633 2606 (.63) 1272 (.78) -1 92 (.01) | -.28 | 111.6 years
(10,3296) ; (10,1306)
ni1 = 4120; no = 1633 2606 (.63) 1272 (.78) -.15 198 (.02) -.14 116.6 years
(10,3296) ; (10,1306)
n1 = 4120; no = 1633 2606 (.63) 1272 (.78) -2 318 (.03) =17 114.4 years
(10,3296) ; (10,1306)

women sample

n = 6260
ni = 2611; no = 1089 1858 (.71) 863 (.79) -.15 148 (.02) -.20 112.9 years
(10,2088) ; (10,871)
n1 = 2611; no = 1089 1858 (.71) 863 (.79) -2 238 (.04) -.14 115.9 years
(10,2088) ; (10,871)

men sample

n = 4131
ni1 = 1796; no = 780 1391(.77) 623(.80) -1 53 (.01) -.07 127.5 years
(10,1436) ; (10,624)
n1 = 1796; n2 = 780 1391(.77) 623(.80) -.15 115 (.03) -.21 112.8 years

(10,1436) ; (10,624)
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the men+women sample and two for the men sample and the women sample.

In general we observe a reduction in the variability of the estimates of the end-
point, given by the bootstrap, when comparing these with the corresponding dia-
gram of estimates (see Aarssen and de Haan, 1994). The men’s sample shows more
variability than the others. We mention that the largest observations correspond
in fact to two men, at the age of 109 and 111 (cf. Aarssen and de Haan, 1994).
For the women+men sample we consider that the solutions of 116.6 years and 114.4
years are the most reasonable ones. Nonetheless we still give the result when the
intermediate value of gamma equals —.1, enhancing that large variability in the data
(the sample indicates the value —.1 when k is small) may still be reflected in the
final outcome.

2.4 Proofs

We start with a number of auxiliary results. The first one has been taken from
Draisma et al. (1999).

Lemma 2.4.1. Assume U(o0) > 0 and there exist functions a(t) > 0 and A(t) — 0,
with A(t) not changing sign eventually, such that

Ulto)-U(t) _ z7-1
a(t) v

A(t)

— H, ,(z)

where

1 /7t —1 m”—l)
H, (x)=- - p <0).
w0 =1 (T =T <o)

Suppose that v # p. Then
a(t) _

Ty 0+ _
tll>r(r>10 TAD ¢ € [—00, 0]
where
0 ify<p
s ify>—p
o= s if0<vy<—pand limy_,(U(t) —a(t)/y) =0
N +00 ifp<y<0
+o0 if0<vy<—pand limy_,o(U() —a(t)/y) #0
+o00 if v = —p.
Furthermore

log U(tz)—log U(t)  z7-—1

a Ul _
(®)/ ‘z(t) = L H, () (2.4.1)
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where
A(t) ifc=0
A(t) = Y4 — [aj((?) if c = oo
pA)/ (v + p) ifc=7/(v+p),
|A(t)] € RV,
- if (0 << —p and limy_,oo (U(t) — a(t)/v) # 0)
" ¥ ifp<v<0
=1 o if (0<7 < —p and limy,oo(U(t) — a(t)/7) = 0)

ory< pory>—p.
Remark 2.4.1. Hence p' =0 if v =0.
Lemma 2.4.2. Suppose for some function a(t) > 0 and function A(t) not changing
sign, tlim A(t) =0,
—00

. U(t?(;)U(t) - ﬁ{l 127 -1 27 -1
lim =- - =H, ,(z)
t—o0 At) plL v+p ¥

for all x > 0, with p < 0. Then we have

Ulte@)=U®) _ v _q
lim a(t) z(1)7 -1 -1

t=00 A(t) VTS

for all functions x(t) with z(t) — oo (t = o0). The same holds with p = 0 and
v < 0. Moreover, for v <0,

U(oco)—U(t) 1
g @ty 1
1im = .
t—00 At) (v +p)

Proof. From Drees’ inequality (1998a) it follows that

U(tz)=U(t) _ 271
: —Y—p—¢€ a(t) 2l _ —
tliglo ilgl)w 1) H, () 0. (2.4.2)

for negative p and each positive €. The first result follows by considering the cases
v >0,y =0 and v < 0 separately.

As to the second result, relation (2.11) and Remark 2(i) from de Haan and
Stadtmiiller (1996) imply: tli}rglo(U(t) —a(t)/y) = U(c0) and

lim U(oo) = U(t) +a(t)/y _ -1
t—o0 a(t)A(t)/~ T+p

The result follows. (]
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Remark 2.4.2. If {U(tz)/U(t) — 2"} /a(t) = =" (2P — 1)/p for some function a(t),
with v > 0 and p < 0, as t = 00, for all z > 0, then we have

Jim {(t) U (£2(6)) U (1) — 1} /olt) = ~1/p

for all functions z(t) with z(t) — oo (t — 00).

Take random variables ¥1,Y2,... ii.d. with d.f. 1 —1/y, y > 1. Then U(Y1),
U(Ys), ... areiid. F.

Lemma 2.4.3. Write

_ M7(1]) UJ (Ynfk,n)

M; = . -1
! a’ (Yn—k,n) !

for j =1,2,3 with
. Rty .
MY =2 " {logU(Yo_in) —logU(Ya_rn)H,
=0

k =
1/lh:=1—7_
Yl = (1= )(1 -2y )/2
ls == (1— )1~ 27)(1 - 3y.)/6.

Then under the conditions of Lemma 2.4.1, for k = k(n) — oo and k(n)/n —
0 (n — o0)

P1 n 1 ~ N
M, = 7k + dlA(E) + Op(ﬁ) + Op(A(E))

Py ~ M 1 - m
My = 7E + d2A(E) + Op(ﬁ) + Op(A(E))

P3 =N 1 ~ N
M; = 7 + d3A(E) + Op(ﬁ) + Op(A(E))

where (Py, Py, P3) is normally distributed with mean vector zero and covariance ma-
trixz

( EP? = W )
4(5—11~_
EP} = Gy P (57 )00
EP2 — 36(19—105y_+146~2)
3 (1*7—)2(1*27—)i(1*37—)2(1*47—)(1*57—)(1*67—)
EAPR) = o rpaap s
E(PPy) =

(1*7—)2(1*2%%&1(;3;1—’3(1*47—)
| BD) = oo e 5
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and
_ 1
b = T oa=r—)
do = 2(3—2p'—4v-)
2T T ) -2y ) —y-)T=p"=27-) |
ds = 6(1872 —22y_ +15p v—+3p'*—8p'+6)

T (A=) (1-27-) A-837-) A—p' =) (A1—p'—27-) (1—p'=37-) "

Proof. From Lemma 2.4.1 and Drees’ inequality (1998a),

log U(Efw))/*lz)g) Uu) _ z'--1
lim supz~7-—°'~ alt)/Ut) = _H, .(z)| =0 2.4.3
00 $>Ii A(t) 7—7[’( ) ( )

for negative p' and each positive €. Hence from this uniform convergence it follows
that

k—1
(3 Y 108U (Vo i) ~ 106U (Vo)) UV )Vt

k=1 (Yo—im ) T _q k-1
1 (Yn—k 'n) 1 Yn—z,n Tz, n
=L A X e () oA
L1kt . n
LSO 1 AT He (V) + 0y (A(D)
i=0 i=0

ye P M P () 1
= B ~D/y-+ e+ AQEH, (V) +0p(A(D) +0p( )

with ¥,Y1,Ys,... iid. withdf 1-1/y,y > 1, and P; the normal limit random
variable of

k
VI 07 = /7 = B =1/

Similarly for MT(Lj),j = 2, 3; note that by Lemma 2.4.1
<10g U(tz) —logU(t) ) J
a(t)/U(t)

- (””_ _1)j+j/1(t) (”’"% _l)ley /() + o(A(t)),
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hence

M?'(Lj){U( n— kn)/a( n— kn)}]

_ k-1 _ i—1
d Y- -1’ .n1 Y- -1 - n
= kZ{ }‘}'JA(E)E;{ ~ } HW—,p’(Yi)+0p(A(E))
Y- —1 o yr- -1\’ P;
- i A(D)E H, s —=
s {7 i {( ) **()}+ ;
P () 1
A~ —).
+op( A7) + oyl 7)
[l
Lemma 2.4.4. Under the given conditions
A ) e
A1 (k) = MY =y + g My + er,pllA(E) + Op(A(E))
ot _ar(2) joVl/2 _ T+ 12 (™ A L
ak) = U /D2 = s+ LM 44, (1222 + 0,(ACT) + 0n( )
with
0 ify<p
v/p if (limiseo U(t) — at) /74 =0
— lim a(t)/U(t) — v+ _ and 0 <y < —p) ory > —p
Tre = 1% A(t) 1 if (limyeo U(t) — alt) /v4 # 0
and0 <y < —p)
orp<y<0ory=—p
Proof.
Mr(zl) = a(Yn—t,n)/U(Yn—kn){lL + M1}
a(Yn—k,n)

UVain) I+ A( n— kn) n
= S )l + M} + lh+ M
A(Yn—k,n) A(%) (k){ ' 1} ’Y+{ ' 1}

= (I'y,pllA( )+ v+ e M+ Op(fi( ))-
k

> 3

a(Yn—k,n)

MO j11/2 =
{ n /} U(Yn—k,n)

{lo/2+ My/2}'/?

a(Yn—k,n)
TWnora) ~ Y AYVu—kpn) 7,0 12, 1 M
= U0, AU/ + = 2
A A BT ag T
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1 M ) 1
) 1/2 , 2 i _—
+7+{(l2/2) + 4 (l2/2)1/2} + OP(A(k)) + OP(\/E)
= 4o 1/ DY2A) + s+ 7 Ma A+ 0p(A(2)) + 0p(—).
YsP k p k D \/E
O
Lemma 2.4.5. Under the given conditions
Gaa (k) = 1= 21— (M) /MP)
4 2 ~n 1
= 4o — — M + =M A(~ —
ry l]_l2 1+l§ 2+0P( (k))-"_op(\/E)
1
= ~v_+ 5(1 —v_)2(1 = 2y_){—4M; + (1 — 2y_) M>}
~ M 1
+OP(A(E)) +Op(ﬁ)'
-1
2 MIPMP
Analk) = 1—2¢1— —————
3l2 3 3l2 ~ M 1
= _ - M; — M. M A~ —
= g M T g M g M oA o)
1—v_)2%(1-3~_
= 7y_+ (1= )12 i ){—6M1—3(1—27,)M2+

(1= 29)(1 = 37 )M5)} + 0,(A() + (7).

Remark 2.4.3. Hence for v > 0

- 1 -~ n 1

Yna(k) = —2M; + §M2 + Op(A(E)) + Op(ﬁ)

o 1 1 1 - 1
’Yn,2(k) = §M1 ZM2 + EM3 + OP(A(E)) + Op(ﬁ)-

Proof of Lemma 2.4.5. For the expansion of 4, (k) see Dekkers et al. (1989), proof
of Corollary 3.2. Next we consider 4, 5(k) :

Mr(bl)Mr(J,Z) _ 1-— 3’7_ _ (ll =+ Ml)(lg + Mg) _ @
MP 3(1—7-) I3 + M3 I3
l2 ll l1l2 ~ N 1
= 2Mi+2M - 22N A ).
Is 1+l3 2 2 3+ 0p( (k))+0p(\/E)

Write 7 := MY 282 /P and v := (1 — 3y_)/{3(1 — 7_)}. Hence

2 1 2 1 2 vV—T

N —y_=1—-= ! = =35
na (k) = 31—7 T 31—» 3(0-w)(1-n)
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that is,
ﬁni,z(k) - 7-
2
= S-m/1-v?
2.3 9 ll lllg ~ N 1
= —_— M - M A . T
S0 [0+ 0 = S0y 0, (A + 001
3 l2 1 l2 1
= S| 2ZM+—M— -2 M A —)|.
2 [l%lg 1+ Me M o ) +°P(¢E)]
O
Lemma 2.4.6. Let l;(n/k) =U(Yp—k,n). Under the given conditions
b -U®) _ B n
7,"' = +O A
with B a standard normal random variable, independent of Py, P> and Ps.
Proof. We use the second order conditions for U.
U(Yn—k,un) — U(%) (EYn—k n) =1 n k n
: =-n : A()Hy (= Y—km A=
e S ACH, (Vo) + 0A(])
k k n n
= (EYn—k,n -1+ Op(ﬁyn—k,n -1+ A(E)Op(l) + O(A(E))
B 1 n
= —+o,(—=)+0,(A(+
T o)+ o (A))
O

Remark 2.4.4. No bias term comes into play.

Lemma 2.4.7. Under the given conditions

a1 (%) _ b+4h 2l B - n 1 n
a(%k) -1 = lils My — l2 —5 M> +’Y\/E + Op(A(E)) + Op(ﬁ) + Op(A(E))
= (1—77)(3—477)M1—%(1—77)(1—277)2M2+7%

| 3

+op ) + 0yl ) + (A7)
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and
&2(2) 213 + 31, 3 3l B
a(%k) -1 = 32l113 M1+%M2—ﬂM3+’7ﬁ
~mn 1 n
+0p(A(E)) + Op(ﬁ) + OIJ(A(E))
= S M+ Gy )12y )1 -3y )M
51— = 2) (1 =3 M+
+op( ) + o) + 0, (A,
Proof.
a2 Xexa M- 47, ()
) a(})
=) MOU Vi) alYaokm) 1= Y (R)
a(Yn—k,n) a(%) 1- Y- ‘

Now by the second order conditions for U

locally uniformly for z > 0, hence

a(Yn—k,n) 1 — E 7 _ ﬁ
W 1= (nYn—k,TL) 1+A(k‘)(

k

k k n n
= ’Y(EYH*I‘:)" - ].) + OP(EYTL*I‘?," - ].) + A(_ Op -

B 1 n
=7ﬁ+0p(—k)+0p(z4(§))-
Consequently
wli) B no AR =
a@) = (A=) M)(+ 7+ o f>+op<A( D
_ B 4l 2l
= 1+(1- )M1+7ﬁ+llle1—EM2
+op(A) + 0yl ) + 0, (AG))
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Similarly for

() Xnpa M (A9, ,(k)
a(%) B a(%)
n Yra(k) —v—

= (1+(0-)M)( +v% + op( 7 +0p(A())(A - %)_
Hence

az(%) B 31, 3 31,

a(%k) -1 = (1—7—)M1+VW+MM1+%M2—%

A+t Ly ok
O

Proof of Theorem 2.2.1. Write a,, := k/(np,). As in de Haan and Rootzén (1993,
p.7) we write

a1 n n 1
bon (k) —an = 2 Ca My b - U(—
Baalh)— (G U

B gima® g Cay-1 &1(%)(1(2)
ﬁn,l(k) v a(%) F

a%—l dl(%)_ aﬁ
= (a(%) 1) @
I;(ﬂ)—U(ﬂ) n U(,,L)_U(ﬂ) a)l —1 n
T k“(E"{ TE R }(E"

We have asymptotic expansions for 4, 1(k),

term (the bias term) but not for (a, Taalk) _y

expression (as in de Haan and Rootzén, 1993
First suppose v > 0. Hence

a1(n/k),b(n/k) and also for the last
)/An1(k). So we want to simplify the
)-

N n, 5 - 1 1 a’;yz,n’l(k)77 -1 &1(2)
.’L'n,l(k/‘) —Tn ~ G(E)an l{(l —an, )( - ;) + An’l(k) } a( k)
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n 1 1 @™ 11 a(®) 1 -1 _n

~a(-)a) | - - —+— + (= 1) - = A=

@ ni(k) Yn,1 (k) ’r( a(%) ) Y p+- )
(2.4.4)

plus terms of lower order by the lemmas above for any intermediate sequence k(n)
and n — oo. X ~
Next note that a;™® = converges to one in probability, since A (2)VE— e

(—00,00) ensures that Y,,1(k) —v = O;,,(ﬁ), and loga,/vk — 0. Hence we may
replace (a% L 1)/An, by log an(¥n,1(k) —v)/An,1 in (2.4.4). Finally note that
this term dominates all the other terms, as n — oo. The result now follows from

Lemmas 2.4.4 and 2.4.5.
Next suppose v < 0. Note that

n 1 a'vnl(k) aY a1 ()
Eni(k) —zn = a(y) |(a] - --)+ n—k
+‘ﬂ_1< f ) b%_ )—1 LAl
v (%) Yypt+y- 'k
'Yn,l(k)_ lo% n(n
= ) |s -+ a"‘l(al(f)J)*
Ely Ani(k) Yn1 (k) v\ a(})
() -U®) 1 n
Tl 2 A
a(%) Yp+7-)
plus terms of lower order, for any intermediate sequence k(n).
Now
aimr k) _ ay  log an

An,1(k) X
- = - asds < (log a,)am®(=1(k)m) 5 o
nak) =7 Ana(k) =7 /7 T
(n = o0). Hence the second term (aZ"’l(k) — a))/An,1(k) is of smaller order than
the first term 1/ — 1/4,.1(k). We find (n — o0)

_v(pl 0) (%)] A
_%g(%)] (2.4.5)

by Lemma 2.4.1. The result follows from the previous lemmas. O
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Proof of Theorem 2.2.2. Since we are dealing with the asymptotic second moment
it makes sense to first consider the limit behaviour in distribution rather than in
L.

First suppose v > 0. Note that under our conditions a(%)a), ~ c1p,”. Consider
(2.4.4) for the sequence k(n) = [n=2¢'/(1=2¢")]. Then by the expressions of Lemmas
2.4.4 and 2.4.5 we have 4,1(k) — v = Op((k(n))~'/?) (see also Draisma et al.,

1999). Hence, since logp, = o(1/k(n)), (4n.1(k) — v)loga, converges to zero for

the sequence I;:(n), and in fact the entire expression in square brackets tends to
zero. This must then also be the case for the as yet unknown optimal sequence.
Hence we may replace (an"* "'~ —1) /4, 1 (k) by 10g an(Yn,1 (k) —7)/4n,1 (k) in the
minimization procedure. Since (log an,)(%n,1(k) —77)/n,1(k) dominates all the other
terms we find (n — o0)

— 2
inf as. B(dn,1 (k) = 7a)” ~ (%) inf as. B(log a)® (G (k) —7)%  (2:46)

By Lemmas 2.4.4 and 2.4.5, disregarding terms that are op(ﬁ) or op(fi(%)),

as. B(ina(k) )" = B{(rs ~ DM + 2 My + 4, A(D)Y

= Bl =)k +hAG) + ;(?%A( D+ apAY

EP? 1EP: EPP.
_ _9)\2 - _ 142

1 o N
O = Dy + 5 + 4,2 A2 (5)

2 2 !
ol 032(%) L 04(72+,p)f12(2)_
cik ci k

k

Ea

2
~ _ C ~
T as. i (k) — 2,)? ~ (log an)zpn{”{ ) + ca(v4, p)A%(

E)}

~ g { SO L i e )

np (k/(npn)) n

—2y—2p’ k c (’7 ) = 1 NPn 2
~ D (log(npn)) {ikf(Tn))‘““m p')e2(—— 3 )? }

So we are looking for

2p"—1

arg min p;; 27~ {(logu)2% ~ + cyér(logu)u~ }
u u n
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Write s := (logu)?/u. Then u ~ s~!(log s)?(u — o0) and we are dealing with
! 2p,71 U !
arg min p;, 2772F {%s + c4@25% (log 5)2(1—=2¢ )} i

This can be minimized by setting the derivative equal to zero. The result is

2p" —1 !
C3 n — g2 -1 2(1—2p') 1-2p" 5,4
Bea—2) n s (log s) + —p’ s (

~ stlfl(log 8)2(1’2"').

2(1—-2p")—1

log s)

That is,

1
o / 1—2o7
1 5 S = <C402( 2P)> . pnnl—lTpl_

u  (log s) c3

Note that the right hand side tends to zero since np, — c¢ (finite, > 0). Now,
replacing u by k/(np,), we get

—1
~ ! ey _
i - (0462(—2p)>1 25 pﬁlnﬁ
Npn C3

or

1
!

c3 1—2p7 —2p
ko(n) ~ [ —2 =28
o(m) <C452(—2P')) e

Note that ko(n) does not depend on p,.
Next we consider as. E(Z,,1(k) — z,)? for v < 0. From (2.4.5), disregarding
terms which are op(ﬁ) or o,(A(%)),

.’i'n,l(k) —Tpn =

— oM [ gny 4 2
a()_72 % Phly T

1 1 4 2l } B B 1<y gm ]
B N R | VA ) G A JAGE
7{<l1 lz) B f VE A4 )
_ a(ﬁ)-(i_i__ 2 20y,
R [\l Al ol VA3

0y,ol1 Liy<p} ) AL ]
+ — A(9)] .
( 72 y(p+7-) (k)

M.
k 2
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Hence
as. E(£y,1(k) — z,)?
@
3 4 1 iQEP12+ 2+%2EPQ2
Yhly vl Al k Y3l k
4 1 4 2 2\ EP, P
T o ) \E Tt E) TE
AL TS L B () AL L
n 4 1 4 4+ 2 + 20
Vhly Al yle) o\ yE)
2
@y,pl Liy<p} )} 2/
+ A%(3)
7 vlp+-) k
es(7-) Nz _ o) N2
w T es(r— PN AN(T) o +eacs(v-,p) (1)
Hence
n C n ’
as. E(ina (k) —2)° = (27 {2 +cta(D)¥'}
k k k
2 2 2
= an’’ L1+2y + CeC2 L2720
By assumption 1+ 2y > 0. Write ¢ := £~ (1127, We want to minimize
tes + ézC(jTlZpltZﬁ—-;i‘Y .
Setting the derivative equal to zero yields
gl-20" — tQT::éff’—l _ 5 -2 1+2y
5206 —2p' — 2’)/7
ie. (n— o0)
1
1+2y ¢ \T2% =2
k ~ = -2 |
o) (—2/)’ —2y 5206) m
O

Proof of Corollary 2.2.1. From Theorem 2.2.2, |A(n/ko)|vko ~ v/ (n/ko)?" Vko ~
Ve (h(vg,v—, p")t=2¢)/2 > 0. The result follows easily from Theorem 2.2.1. O

Proposition 2.4.1. Under the conditions of Theorem 2.2.2, as n — oo,

1 1
_ e —2p
- Rl S T
ko(n) ~ o I oy
+ z 27 2
(—ZP’JZV 55%6) ni=2"  fory <0
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—2p’

= h(y4, 7=, p') nT=2"
where ko(n) := arginfy, as. E(Z,.1(k) — £n,2(k))?,

(L)’?n,z(k) -1

np'n.

~ .~ ,n
mn,2(k) = ank,n + a/2(E) r? 2(k) ’

and & from |A(t)| ~ /&t (t = o0).

Proof. For v > 0, neglecting terms which are Op(ﬁ) or 0,(A(%)), and by similar
arguments as in the proof of Theorem 2.2.2, the dominant term in the expansion of

Zn1(k) — Zp,2(k) turns out to be
e1p, "~ (10g an) (n,1 () = An,2(k))

o 3
~ apy"y  ogay |(v4 — )M+

4(3 V4) Mz — —M3] :

Hence

as. E(&n,1(k) — &n2(k))?

o o [ loga,)?  _ 2 72,1
= a2 [ean) BB e ) g2 ()

The result follows similarly as in Theorem 2.2.2.
Next suppose v < 0. Then, similarly as before (neglecting terms which are

op( 32 or op(A(2))),
:i'n,l(k - xn 2

(*)
{ﬁ 0 ()
N

Hence

The result follows similarly as in Theorem 2.2.2. O
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Proof of Theorem 2.2.3. We proceed as in the previous theorems and proposition
but there are two differences. Firstly we need an expansion for the empirical tail

function
1 —
Un := (1 - Fn>

instead of the real one U. Secondly we are no longer dealing with asymptotic mean
square error but with real finite sample mean square error. We can deal with both
difficulties exactly as in Draisma et al. (1999): inequalities for U, are obtained
by using well-known results for the uniform quantile process, which we combine
with the results of Theorem 2.2.2 and Proposition 2.4.1, and the mean square error
becomes tractable by restricting to a certain set.

Let ko,1(n) be such that E (#5,1(k) = #n,2(k)) 1z, 1 (k)—m 2(k) | <ks)» 0 > —1/2,
is minimal. The statements, ko 1(n)/ko(n) — 1 and

A A 2
E (&n,1(Ko,1) = Zn,2(k0,1)" L (13, 1 (kov1)—m a(ko ) <HS.,)
as.E (%n,1(ko) — &n,2 (%))2

as n — oo, follow as in the proof of Theorem 3.3. of Draisma et al. (1999). The
expansions of the bootstrap estimators are similar to the ones for the estimators
themselves, now using the inequality for U, from Lemma 5.3 of Draisma et al.
(1999), instead of using (2.4.3) for log U. Some details are in the proof of Theorem
3.4 of the aforementioned paper, where also it becomes clear that the condition
ny = O(n'~¢), implies that the bootstrap set-up does not result in extra (unwanted)
terms in the expansions. .

Finally we sketch why, when replacing ko(n) by ko(n) in Corollary 2.2.1, the
same asymptotic normal distribution obtains.

Let t € [t1,t2], 0 < #1 < t2 < 00. Proceeding as in the proof of Lemma 2.4.3 one
gets, e.g. if A(n/k)VEk — X, hence A(n/[kt])Vk — M, as n — oo,

My (t) =k M L[Mil{logU(Y in) —logU(Y, )}—l
- a(Ynf[kt],n) [kt] =0 n—un n—[kt],n 1
converges in distribution to
1 B(t) At
(1_7—)m t + (1—7_)(1_p1_,y_)

in D[t1,t2], with B(t) standard Brownian motion. Similarly we can give a process
version of the other asymptotic quantities involved.

According to Skorohod’s theorem (Billingsley, 1971) we can change the sample
space and we can replace convergence in distribution by almost sure convergence,
not only for the various asymptotically normal quantities but also for the relation
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ko(n)/ko(n) — 1. Then on this sample space, e.g.,

ko(n) 1 A
o (wn)) RN e A (e (e ey

as n — 00, almost surely hence in distribution.
Using this device everywhere one sees that indeed the result of Corollary 2.2.1
holds when kgy(n) is replaced by ko(n) throughout. O

Proof of Theorem 2.2.4. By the preceding lemmas, apart from terms op(ik) and

a(%) -
o [ b)) =1 faR) 1 n
= ap) [ A TP v- (a(%) 1) v-(7- +p) (k)]
Hence
as. E(#0,1(k) — 20)? Z(Z) {07(2) + cs(’Y;P')fP(%)}
= A {T +an™)
O

Proposition 2.4.2. Under the conditions of Theorem 2.2.4, as n — o,

1
— 1 Qv rel 1—2p7 oyt oy
k‘o(n) ~ <i C_7) ? n—rl—;f’ — g(’)/f,pl) nﬁr

—2p' — 2v_ CoCs
where ko(n) = arginfy, as. E(%01(k) — #o2(k)?, and & from
A(H)] ~ VEte (t - o0).
Proof.
a1 (%)
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Hence
a5, Blos() — 020 = ({0 +aair B (D)
= aGr-{Traalyr ],

O

Proof of Theorem 2.2.5. The result follows similarly as in the proof of Theorem
2.2.3. O

Proof of Theorem 2.2.6. With the obvious changes, following the same arguments
as in the proof of Theorem 2.2.2 for positive v, we know that for the optimal sequence

) i1t
x:,l(k) — Tn ~ 12:_

log an (’7:1(73) - 'Y+)
that is,

2

=7+ 2
%) irlifas. E (log a,)’ (A1 (k) —v4) "

inf as. E (&1, (k) — z,)” ~
o (st =)~ (222

Note that from Lemma 2.4.4

2
< 2 7 . 2 (T
B (a0 =)~ 3+ gt (7)-

p2(1—
([l
Proposition 2.4.3. Under the conditions of Theorem 2.2.6, as n — o0,
_ 1— pl 4 1/(1_291) _QPII _ _2pll
ko(n) ~ (%) ni=2" = l(yy,p') ni=2
where  ko(n) = arginfy as. E (&} (k) - :?::,2(19))2 and &  from

|A(t)] ~ VEt? (t — 00).
Proof. Following similar arguments as before, we know that for the optimal sequence
—7+

5 (B) = 7 (k) ~ =2

loga, (’AYTTJ(’“) - 3’:,2 (k))
T+

where from Lemma 2.4.4, neglecting terms which are Op(ﬁ) or op(/I(%)),

. . P @ o am
A = a0 = e = B - S A (T)
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so that, as n — oo,
~t ot 2 % N qe(n
E (350 — 42 9)” ~ o+ 4 (3)
O

Proof of Theorem 2.2.7. The result follows similarly as in the proof of Theorem
2.2.3. O

Proof of Theorems 2.2.8 and 2.2.9. Set

NG
M= ————1;

! a’l (Ynfk,n) 72

for j = 1,2,3 with [; as in Lemma 2.4.3. Since we are dealing with N, j = 1,2, 3,
we shall use the second order condition (2.2.9), instead of (2.4.1). Then from (¢ —
o0)

(ﬂg%g@y:<ﬁ“ﬁf+jmﬂc”‘ﬁjﬂaww+dmm,

the results of Lemma 2.4.3 follow similarly as in the proof of this lemma, with A
replaced by A and p' replaced by p. The rest of the proof is the same as before. [
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Chapter 3

Optimal asymptotic
estimation of small
exceedance probabilities

J. Statist. Plann. Inference 2002, 104, 83-102

Abstract. For the estimation of the probability of a tail set beyond the range of the
observations an estimator based on Pareto tails can be used. We calculate the optimum
number of upper order statistics used for this estimator, in the mean square error sense.
Moreover an adaptive procedure is given to find this optimum in a practical situation.

3.1 Introduction

Let X1, X5, ..., X, be asample of n i.i.d. random variables (r.v.), with common
(but unknown) distribution function (d.f.) F. The aim is to estimate an extreme
exceedance probability, that is, given a *high’ value z one wants to estimate 1 —F'(z).

On the one hand, if z is well into the sample range then it is known that 1— F(x)
can be estimated via the empirical d.f. (Einmahl, 1990). On the other hand, if z is
at the boundary or outside the range of the observations (and then we shall call it
a ’high’ value) then alternative approaches have to be considered. Empirically this
means P(X > z) < 1/n, and hence we will denote z by z,, and define p, = P(X >
Zn). Therefore in this paper we consider the cases np, — ¢ > 0 where ¢ is a finite
real constant, as n — 00. Note that ’well into the sample range’ means np,, — oo
and in this case the use of the empirical d.f. to estimate p,, is preferred.

For the main conditions we assume that F' belongs to the domain of attraction of
the generalised extreme value d.f. for some real extreme value index 7y (Gnedenko,
1943), shortly F € D,(GEV), vy € R

47
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Equivalently, one may write it in terms of tail probabilities,
lim ¢ {1 — F (b(¢t) + za(t))} =1— H,(x) (3.1.1)
t—o0

for all z for which 0 < H,(z) < 1, where a(t) > 0, b(t) are suitable normalising
functions; H,(z) is the generalised Pareto d.f. given by

H/(z)=1-(14~2)""7, 14+yz>0,z€R",veR. (3.1.2)

For the exceedance probability estimator we use (as in Dekkers et al., 1989; Dijk
and de Haan, 1992),

SN )~/ AR
(k) = EmaX{O, (1+%(k)Lﬂb§F)>} (3.1.3)
k

n

where a(t), b(t) and 4, (k) are estimators of a(t), b(t) and 7, respectively, n is the
sample size and k is an intermediate sequence i.e., ¥ = k(n) such that k(n)/n — 0
and k(n) — oo, as n — o0o. A motivation for (3.1.3) may be given as follows.
Relations (3.1.1) and (3.1.2) suggest, for large z,

-1/
1—F(x)z%{1+7wa(f)(t)} , as t—=o00. (3.1.4)
Then take for ¢ the quantity n/k. Since in practice the condition {1 + 4, (k)(z, —
I;(%)) /a(%)} = 0 may not be fulfilled, the maximum value between this quantity
and zero is taken.

Our main result concerns the characterisation of an optimal rate, in the asymp-
totic sense, for the number of upper order statistics & in (3.1.3). The reasoning
is in the same line as in Danielsson et al. (2001) and Draisma et al. (1999) on
extreme value index estimation, and Ferreira et al. (1999) on endpoint and high
quantiles estimation. We obtain an optimal rate of order n to some positive power
(cf. Theorem 3.2.1). However this asymptotic result might not be adequate for
practical applications. Firstly, it contains second order parameters that can not
be estimated with sufficient accuracy. Secondly, even in cases when cs and p are
known, the asymptotic optimal result may be far from the real optimum. Still, our
optimal rate may be applied in the adapted bootstrap procedure, as suggested in
the aforementioned papers, to optimise the performance of py, (k).

In this paper we focus on models with a power expansion as in (3.2.6) below,
therefore excluding the case v = 0. For the gamma estimator we consider, the case
v = 0 requires slowly varying - type conditions, regarded as beyond the scope of
this work.

An alternative approach to our problem is given in the work by Hall and Weiss-
man (1997). However they concentrate only on models with positive v. Moreover,
our result allows smaller exceedance probabilities, therefore covering more interest-
ing situations. Other related work on tail estimation includes Davis and Resnick
(1984) and Smith (1987).
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The paper is organised as follows. Section 3.2 deals with our main result, namely
Theorem 3.2.1. In Section 3.3 is a simulation study, including results from the
adaptive bootstrap. In Section 3.4 are the proofs. A short explanation of the
adaptive bootstrap method is postponed to the Appendix.

Finally some notation. Let a, and b, be two sequences, then a, ~ b, means
limy, 00 @n/bp = 1. Let v- = min(y,0) and v+ = max(y,0). Denote the right
endpoint of a d.f. F by z¢ i.e., o = sup{z : F(z) < 1}. Under the assumption
F € D,(GEV), xy is finite if v < 0 and infinite if v > 0. For a real function f write
f¢ for its generalised inverse function.

3.2 Asymptotic optimal rate

On the basis of an i.i.d. sample X1, Xs,...,X,, from a d.f. F, the estimators
used in (3.1.3) are (as in Dekkers et al., 1989; Dijk and de Haan, 1992)
1 (M(l))2
S — (1) —I(1=2In J y-1
(k) = M’ +1 2(1 e ) (3.2.1)
and
AT -
a(y) = Xn-kn MM (1 =45 (), (3:2.2)
where
. 1R .
MY = z (log Xp in —log Xn xn), =12, (3.2.3)
=0
and
- _ 1 V2 ).
(k) = 1- 5(1 - W) = Jn(k) — My"; (3.2.4)
and
- n
b(E) = Xn—kn (3.2.5)

Our main result is valid for the following model. Let U = (1/(1 — F))*. Then,
as t = oo, we assume

cot? (1 +eht + o(tﬂ')) ,y>0andp' <0

Ut) = , ,
co + coer <1+c’2t” + o(t? )) ,—1/2<y<0andp’' <0

(3.2.6)

where ¢g > 0, ¢; < 0 and ¢}, # 0 are real constants (also we shall need to impose
ch —c1/2 # 0 in the v = p' case). Then

~vlogt +logeg + cat? + 0(t?) ,y>0andp <0

logU(t) = { log co +c1t? (1 + cpt? + o(t?)) —~1/2<~v<p<0 %7
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where 7, ¢o and ¢; are the same as before but p and ¢ # 0 may differ from p’ and
ch, respectively. In fact if ¥ > 0 and p' < 0, or —1/2 < v < p' < 0, (3.2.6) and
(3.2.7) are equivalent, with p’ = p and ¢}, = c2. For the other cases note that (3.2.6)
with p' < v < 0 implies, as t — oo,

logU(t) =logco + c1t” (1 + c2t” + o(tY)) (3.2.8)

(where co =ch —c1/2if p' =~ and ca = —c1 /2 if p' < 7). But if (3.2.8) holds then
one does not get back (3.2.6) with p’ <~ but only the case —1/2 < vy = p' < 0 with
ch=ca+c1/2.

The motivation for such a model comes from the second order regular variation
condition given in e.g. de Haan and Stadtmiiller (1996), together with the require-
ment that their second order auxiliary function A(t) must be asymptotic to ct? | as
t — oo, where ¢ # 0 and p’ < 0 are real constants. Moreover, in general a second
order representation of the type (3.2.6) holds for U iff a second order representation
in terms of the underlying d.f. F, of the type 1 — F(z) = dz="/7 {1 4 6z + o(z*)}
if v >0;1—F(zo— 2 ') = de'/7 {14 0z* + o(z*)} if y < 0, as £ = oo (d > 0,
0 # 0, a < 0), holds. These include the well-known Hall model (see e.g. Hall and
Weissman, 1997).

We restrict attention to v > —1/2, since otherwise the extrapolation should
be based on extreme rather than intermediate order statistics (cf. Aarssen and de
Haan, 1994).

Let 7, (k,n) = 1/log(k/(npy)) if v > 0, (k/(np,))" if v < 0 and C = ¢p? /v if
¥ >0, co(y + p)p/yif v <O.

Lemma 3.2.1. Assume (3.2.6) and np, — constant (finite, > 0), as n — co. Let
k(n) be an intermediate sequence.

(i) If (n/k)*VE = X\ >0 and ry(k,n)Vk = oo, then

pn (K pn (K
R, ,(k,n) (p”( ) _ 1) =1, (k,n)VE (p”( ) _ 1) (3.2.9)
Dn Dn
converges in distribution to a normal r.v., N say, with mean A C bias., , where
—vptytp
1p(1—p)? v>0
U—7)p ,—1/2<y<p'(=p) <0

Y2 (1=y=p) () (1-27—p)
1-3

v
Y1-7)(1-27v)(1=37)
c1(1—4y+9°4+67°)+2c0 (1—7)*

bias,,, =

,(=p)>p and —1/2<y <0

4cov2(1—)(1—2v)(1—-37) 7_1/2 <7= pl(: p) < 0:
(3.2.10)
and variance
1+ 1/ >0
vary = (1—7)2(1—37—1-472) _ (3211)
{ T ma iy 0 H2<r <0
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(i) if (n/k)*Vk — oo and 7, (k,n)(n/k)=* — oo, then

R, ,(k,n) (f’”(k) - 1) = (k, ) (%)W (f’”(k) - 1) (3.2.12)

Dn Dn

converges in probability to N = C bias,,.

Remark 3.2.1. Note that: (i) (n/k)’Vk — X > 0 and r,(k,n)vVk — oo im-
ply ry(k,n)(n/k)=f — oo; (i) (n/k)”\/E — o0 and 7 (k,n)(n/k)~? — oo imply
7 (k,n)VE — 0.

In the sequel we shall restrict ourselves to intermediate sequences k(n) for which
(n/k)?Vk converges to a finite or infinite constant.

From Lemma 3.2.1 we have that the best rate of convergence of (p,,(k)/p, —1) is
attained in the case (i) with A > 0. To see this just note the following. Let v < 0. If
A > 0, k is of order n=2¢/(1=20) (say ko) and the rate of convergence is k3 /2 / (np,,)".
Now let k; be any other sequence such that (n/k1)?+/k; — 0, which means k; =
o(ko). Then, the ratio of the correspondent rates of convergence is (ko/k1)?+1/2,
which goes to infinite since v > —1/2. Next take k2 such that (n/k2)?vk2 — oo.
Then, the ratio of the rates equals ki *'/%/(k]*Pn=r) = (ko/ks)"+Pkg/*~" In~",
which again converges to infinite. The case v > 0 is similar.

Also from Lemma 3.2.1, we have that (p,(k)/p,—1) is asymptotic to R (k,n)N,
where N is ar.v. Our goal is to find the optimal sequence kg(n) such that the mean
square error (mse, say) of the approximating r.v. R;,},(k, n)N is minimal, that is

2
ko(n) = argirl;f r;z(k,n) (U(Z7 + bias?y’pC2 (%) p) . (3.2.13)

Note that from the previous considerations it follows that this optimal rate is,
asymptotically, proportional to n to some power between zero and one.

Theorem 3.2.1. Suppose (3.2.6) and, as n — oo, np, — constant (finite, > 0)
and

logz, =0 (n%) Lify>0; (zo—2n) t=o0 (rf%) ,ify<0.  (3.2.14)

Then, ko(n) (cf. (3.2.13)) is asymptotically equal to

1
2 \Toz -2 .
( e 7—) ni-2p ,ify>0

252 —20c2,0
biasy , —2c3p

(3.2.15)

1
var (1427)~? T=2p =2p .
(s =igtis) 0 TE it —12<0 <0

Remark 3.2.2. Our theorem is valid, up to changes in constants, for any estima-
tors of (¥, @, b) satisfying the following two properties: (i) if (n/k)?vVk — A > 0, then
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vk (ﬁ —v,af/a—1, (l; - b)/a) converges in distribution to a 3 — d normal r.v., with

specified parameters; (ii) if (n/k)?vk — oo, then (n/k)=* ('3/ —v,afa—1,(b— b)/a)
converges to a known 3 — d (non-zero) constant vector. Therefore, the moment es-
timator (3.2.1) is, in fact, one possible estimator we used (cf. Lemma 3.4.2). For
instance, most of these conditions have been established for the maximum likelihood
estimator (cf. Smith, 1987). Or, if one wants to restrict to the particular case of
~ > 0, the Hill (1975) estimator could be another possibility.

Remark 3.2.3. Note that ko(n) in the theorem does not depend on z,,.

Remark 3.2.4. Concerning the conditions (3.2.14) in Theorem 3.2.1:
(1) Since p and v are unknown (3.2.14) may alternatively be written as
logz, =0(nf),e>0,ify>0; (xg—x,) ' =0(n),e>0,ify<0.
(3.2.16)
(2) In fact (3.2.14) is only required when np, — 0 as n — oo.

(3) Conditions (3.2.14) are equivalent to logp,/n~?/1=2/) — 0, if v > 0 and
p1/n~(F)/(1=20) 5 0 if v < 0. Or, equivalently,

o 108(ho(n)/(2p.))

lim T =0 >0 (3.2.17)
Tim. W =0 ify<0. (3.2.18)

Note that if v > 0, (3.2.17) implies (3.2.18); conversely if v < 0, (3.2.18)
implies (3.2.17). Therefore our optimal sequence satisfy condition (2.10) in
Dijk and de Haan (1992).

Example 3.2.1. Generalised extreme value d.f. Let GEV,(z) = exp{—(1+yz) '/},
1+vz > 0,7 €R Then U(t) = ((—log(1—1/t))""—1)/v,t > 1. Hence, as t — o0,
one gets U(t) = =1/y+t7/y(L =yt /24 o(t™ 1)), —1/2 <y < 0; t7/v(1 —t 7 +
o(t™)), 0< vy < 1L;t(1=3t71/2+0(t™1)), v =1; t7 /y(1 =yt /2+ o(t71)), v > 1.

Example 3.2.2. Reversed Burr d.f. A r.v. Y has Burr d.f. with parameters [,
Aand 7if Fy(y) = 1—-8/(B+y")* y >0, 8,A,7 > 0. We shall denote the
df. of X = —Y~! by Reversed Burr, say RBg, ), which is given by Fx(z) =
1-pYB+ (—2)™)* = < 0 = z9, B,A\,7 > 0. This r.v. has been referred
to in financial applications. Note that in order to properly use this model with
the suggested methods it must be shifted by a positive constant, say a, so that
zo = a > 0. Therefore in this case U(t) = a — ~'/7(t'/* —1)='/7 ¢ > 1. Hence,
as t — oo, U(t) = a— B~Y/7t=1/O)(1 441X /1 + o(t='/*)). The extreme value
parameters are y = —1/(A7) and p' = —1/A.
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3.2.1 Consequences of applying a positive shift in our model.

Our estimators require strictly positive data. It is straightforward from its def-
inition, that the moment estimator (3.2.1) is not shift invariant. We shall now
discuss the effect of a positive shift, independent of the sample size, has on our re-
sults. Namely, on the asymptotic behaviour of the estimator in general, and on the
minimal mse of the approximating r.v. in particular. E.g. in Rosen and Weissman
(1996) is a simulation study which includes the moment estimator and the shift was
taken into account.

Let a > 0 be a positive constant. Denote the shifted r.v. by X* = X 4+ a, F*
the respective d.f. and its right-endpoint by z§ = 29 + a. Then F*(z) = F(z — a),
and so U*(t) = a + U(t). We discuss the cases v > 0 and v < 0 separately.

In the case v > 0, after a shift a in (3.2.6), ¢o and 7 remain the same but the
second order parameters may change. More specifically for (3.2.7), it remains the
same in case p > —v, whereas in the other cases it changes to

vlogt +logeco + 2t 4+ o(t™7) , p< =7

*
log U™ (t) = { vlogt +logeo + (& +02) t7+o(t) ,p=-vand L +c2 #0.
For simplicity, in the following we will assume a/cy # —ca when p = —v. Otherwise,
it may happen or not that such an expansion still holds for U*, depending on whether
U admits an expansion with higher order terms. For instance, such is true for GEV
d.f. (cf. Example 3.2.3).

Hence, when v > 0 the second order parameter p changes to p* = max(—~, p)-
Consequently, if p < —~ the optimal rate of convergence becomes worse, since it is
mainly governed by +/ko, which becomes asymptotically proportional to nY/(1+27),
This is more serious when « approaches zero. Otherwise, if p > —~, the rate of
convergence does not change.

In what concerns the minimal mse of the approximate limit distribution, it ap-
proaches zero with a rate mainly governed by kg 1. Hence, the same considerations as
for the optimal rate apply. That is, the rate gets worse when p < —v. The minimum
mse is exactly the same if p > —+, since the model is the same. If p = —v the order
is the same. In this case, ki ~ (c2/(a/co + ¢2))>/ 1427 ko and the ratio of the mini-
mum mse’s, minmse(kq)/ minmse(kg) say, is asymptotic to (cz/(a/co+ c))2/(11+27).
This is larger than one when a € (0, —2¢gcz) and ¢ < 0.

Now we turn to the case v < 0. After a shift, (3.2.7) changes to logU*(t) =
log(co + a) + ¢ c1/(co + a) t7 (1 + c5t° + o(t?)) where

ca ,—1/2<y<p'(=p) <0
=8 “sedy 7(=p)>p and —1/2<y <0

cz-l-% ,p’:q/andcz-k%;é&

Similarly as before we only consider the cases ¢y # —acy1/(2(co + a)) if p' = 7.
Therefore v and the second order parameter p do not change. Consequently the
rate of convergence and the rate of minimal mse remain the same.
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If v < p' the minimal mse is exactly the same, since ¢y does not change. If
(= p) > p, then k§ ~ (co/(co+a))~2/1=27) ky. After a few simplifications we have
that the ratio minmse(kg)/ minmse(k) is asymptotic to (co/(co+a)) =20 +21)/0=27)
This is always larger than one. For the other situation, v = p', we do not analyse it
here since it would be rather technical and considered not so relevant for the present
study (note the dependence of bias,,, on ¢; and c3).

Notice that in any case the variance remains the same since v does not change.

Example 3.2.3. Consider the GEV d.f., with 0 < v < 1, and a such that a/cy +
ca = ay —1 = 0. Then, expanding U up to third order terms one gets U*(t) =
Ult)+a = t7/y(1 —vt71/2 + o(t~!)). That is, the second order parameter p
changes to p* = —1, implying a better rate of convergence. Therefore, in general,
one has that for the cases where such expansion exists, the second order parameter
becomes smaller. This means an improvement in the optimal rate of convergence,
and in the minimum mse as well.

3.3 Simulation results

For the simulations we use the distribution families presented in the examples
in Section 3.2, generalised extreme value d.f. and Reversed Burr d.f. Specifically
RB442, GEV_1, GEVs and GEV;. We opted by fixing two exceedance proba-
bilities to be estimated: p, = 1/(nlogn) and p, = 1/n. Then to each d.f. they
correspond to a different quantile given by,

—1/7
“log(1 — pn))~" —1
:cn:( 08(1 = Pn)) +a and z,=-— %—ﬂ +a,
Y Pr

for GEV,, and RBg ) ;, respectively. The parameter a stands for a positive shift in
the data set, in order the sample be constituted of positive values. In our simulation
study, for each d.f. a is the minimum positive integer such that all generated values
are positive. Three methods to estimate the exceedance probability were considered:
1) (3.1.3) with k determined by the adaptive bootstrap method resumed in the
Appendix; 2) (3.1.3) with k equal to the intermediate sequence /n; 3) empirical
d.f., by calculating the number of values in the sample greater than the respective
quantile. Of course the last approach is only used in the case p, = 1/n.

The simulation results are resumed in Tables 3.1, 3.2, 3.3 and 3.4, and Figures
3.1, 3.2 and 3.3. They are based on 200 independent replications of samples of size
n = 10000 and n = 2000. For each n, the generated samples are based on the same
pseudo-random sample.

In the tables are the sample bias, i.e. sample mean minus true value, root mean
square error (rmse) and the number of simulations with valid solutions in 200 (n.
solut.). The second line of values for each d.f. (in italic), corresponds to these
descriptive measures calculated only on those samples where all procedures yielded
a valid estimate. We classify as a non-valid solution p, (k) = 0 or 4,(k) < —1/2,
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1 - bootstrap 2-k(n)=+n

bias rootmse  n. of bias rootmse  n. of

(x10%)  (x10%) solut. | (x10%) (x10%) solut.

GEV_; (a=4) .108 .259 162 .094 .243 172
.123 .268 150 .086 .229 150

RB4,4,> (a=1375) .061 .202 70 .076 .254 147
.066 .207 67 142 .308 67

GEV (a=2) -.017 .046 191 .008 .110 200
-.017 .046 191 -.001 .085 191

GEV; (a=1) .030 .061 193 .006 .094 200
.030 .061 193 .006 .095 193

Table 3.1: Simulation results based on samples of size n = 10000 and 200 indepen-
dent repetitions. Estimation of p1gooo = 1/(100001og10000) ~ .108 x 1074,

when using the estimation methods 1) or 2). Moreover in the bootstrap method (for
the technical details, namely the explanation of the quantities kf(n1) and kg(n2),
see the Appendix) sometimes happens that k(nq) is less or equal to kg (n2), or that
the intermediate consistent estimate of p,, is equal to zero, or that ko (n) is equal
to 0,1 or it is greater than the sample size; all of these also considered non-valid
simulations.

When estimating p, = 1/n, the empirical d.f. always yields a valid solution.
But, from Tables 3.2 and 3.4 the obtained estimates have the largest rmse. Hence,
our small simulation study indicates that the estimates from the empirical d.f. are
the poorest, when any of the other two alternative methods is giving a solution.

For all simulations where v < 0, and when comparing the methods 1) and 2),
none of each is systematically better than the other, either if looking at the rmse
or at the bias, or from the histograms and boxplots. Nonetheless the bootstrap
procedure fails more often. The worst cases happen with RBjs42. In particular
when n = 2000 we only got approximately 25% of valid solutions.

When v > 0, it is clear that the bootstrap procedure is giving the most accurate
results. The corresponding estimates always have the smallest rmse. The histograms
and boxplots confirm the smaller variance of these estimates.

Hence we conclude that the bootstrap procedure is giving reasonable estimates.
In this short simulation study these are among the best. The case v < 0 needs
further work.

3.4 Proofs

Let Y1,Ys,... be iid. r.v. with df. 1 —1/y, y > 1. Then U(Y7), U(Y2), ...
areii.d. F.
As mentioned in Section 3.2, our model (3.2.6) implies (3.2.7) which in turn
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1 - bootstrap 2-k(n)=+/n 3 - empirical d.f.

bias rootmse  n. of bias rootmse  n. of bias rootmse  n. of

(x10%)  (x10%) solut. | (x10%) (x10%) solut. | (x10%) (x10%) solut.

GEV_ ; -.007 .068 158 .005 .070 192 .008 .096 200
(a=4) -.005 .068 155 .003 .062 155 .010 .094 155
RB4,4,2 -.006 .086 91 .000 .073 183 .008 .096 200
(a=1375) -.006 .086 91 .030 .080 91 .027 110 91
GEV3s .001 .029 177 -.003 .056 200 .008 .096 200
(a=2) .001 .029 177 -.009 .049 177 .005 .091 177
GEV; .016 .039 192 -.002 .052 200 .008 .096 200
(a=1) .016 .039 192 -.002 .052 192 .009 .097 192

Table 3.2: Simulation results based on samples of size n = 10000 and 200 indepen-
dent repetitions. Estimation of p1gggo = 1/10000 = .1 x 1073,

1 - bootstrap 2-k(n)=+n

bias rootmse  n. of bias rootmse  n. of

(x10%)  (x10%) solut. | (x10%) (x10%) solut.

GEV_ 1(a=4) 291 1.007 133 402 1.127 162
.365 1.037 123 .393 1.135 123

RB4,4,2(a=1375) 619 1.402 47 .562 1.280 119
.619 1.402 47 .842 1.417 47

GEV5(a=2) -.052 .378 179 .024 .666 199
-.051 .380 178 .022 .663 178

GEVi(a=1) 244 424 188 | .027 598 200
244 424 188 .033 .592 188

Table 3.3: Simulation results based on samples of size n = 2 000 and 200 independent
repetitions. Estimation of p2ggo = 1/(20001log2000) ~ .658 x 10~%.

1 - bootstrap 2 -k(n) =+/n 3 - empirical d.f.

bias rootmse  n. of bias rootmse  n. of bias rootmse  n. of

(x10%)  (x10%) solut. | (x10%) (x10%) solut. | (x10%) (x10%) solut.

GEV_ 1 -.001 .345 147 -.023 317 189 .032 .506 200
(a=4) -.001 .345 147 .005 313 147 .068 513 147
RB4,4,2 -.053 .343 56 -.015 .336 169 .032 .506 200
(a=1375) -.053 .343 56 .161 .345 56 .214 .579 56
GEVs .040 .193 179 -.044 .295 200 .032 .506 200
(a=2) .040 .193 179 -.036 .292 179 .042 501 179
GEVy .102 .207 178 -.030 281 200 .032 .506 200
(a=1) .102 .207 178 -.027 .282 178 .039 .496 178

Table 3.4: Simulation results based on samples of size n = 2 000 and 200 independent
repetitions. Estimation of psggo = 1/2000 = .5 x 1073.
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verifies the second order condition considered in e.g. Ferreira et al. (1999),

log U(tz) log U(t) _ g'-—1 1[z-tP -1 27— -1

lim —20/0W = = - [ - 3.4.1

t—ro0 A(t) pl v-+p v (341
where a(t) > 0 and A(t) — 0 (as t — oo0) are real functions. Note, however, that
here we do not exclude the case v = p' (although in this case one still has to impose
¢y = ¢y —c1/2 # 0in (3.2.6)). Simple examples of the auxiliary functions are

ycot” [1+(’y+p)%t"] ,Yy>0and p<0
a(t) = yeoert? [1 +(v+ p)%t”] ,—1/2<y<p<0 (34.2)
yeoert? [L+ (e1 + 2e2)t?] ,—-1/2<y=p<0
and
2 p*tP ,y>0and p<0

Z(y+ppt? ,-1/2<y<p<0. (3.4.3)

Aty =Ctl = {
Note that a(t) € RV, and A(t) € RV,.
Lemma 3.4.1. Let logU be as in (3.2.7) and

Mﬂ(:]) U'j (Yn—k,n)
aj (Ynfk,n)

where a(t) is a positive function such that (3.4.1) holds and

M; = -1, j=1,2

k—1
MT(LJ) = % E {log U(Yn—i,n) — log U(Yn—k,n)}]a
=0

l/ll =1 - Y-
1/l =(1—-y-)(1-2y-)/2.

Also choose a function A(t) — 0 such that (3.4.1) holds. Then for k = k(n) — oo
and k(n)/n = 0 (n = o)

P; n 1 n

M, =L A(— — A(= ) =1,2

3= g AR Ta( ) o (AR), i=1,

where (Py, Py) is normally distributed with mean vector zero and covariance matriz

EP} = oy

_ 1(5-11_)
EP; = (1*7—)2(1*27—)1(1137—)(1*47—)

E(PPy) = ===

and

_ 2(3=2p—4y-)
b2 = T = (- ) (=p=27) -

_ 1
{ d = oy
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Proof. This lemma is an immediate consequence of Lemma 4.5 in Ferreira et al.
(1999), since (3.4.1) holds. O

As a particular case, the following is a compilation of Lemmas 4.6 - 4.11 in
Ferreira et al. (1999). Namely they state the consistency of the estimators 4, (k)
and a(%).

Lemma 3.4.2. Assume (3.2.6) and choose auziliary functions a(t) > 0 and A(t) —
0 such that (3.4.1) holds. Then, for k = k(n) = oo and k(n)/n — 0 (n = o0)

k) _ gy (ﬁ_ : )M1+ 2y + Tt g
v vl 3 ¥ k
with
_ v/p ,y>0andp<0
qv,p—thma(t)/i(#z 0 ,-1/2<y<p<0
=00 (t) & -1/2<y=p<0,
&(%) 12 +4l1 2l1 B n
=1 M, — =L M. A+
ap T Mg el

with B a standard normal r.v., independent of (P, Py), and

| 3

b(p)-U) _ B
B VE f

Proof. Our conditions are just particular cases of the more general situation con-
sidered in Ferreira et al. (1999). Note that if 0 > v > p’ then ¢z = —¢;/2 and so
gy,p = —1, as expected from the general result. To get g,,, in the particular case
—1/2 <y =p' = p <0, take w.l.g. the functions given in (3.4.2) and (3.4.3). O

op(—=) +0p(A(7)) -

The next lemma, is presented in a somewhat technical way, directed to what we
need for the proof of Theorem 3.2.1. For a more general result we refer to Ferreira
et al. (1999), although their conditions are slightly different.

Lemma 3.4.3. Suppose (3.2.6) and choose a(t) > 0 and A(t) — 0 such that (3.4.1)
holds. Then

Ut2)~U(t) +
lim o wa Ll [ >0

- 1
t5%0 A(t) = (1+2%1{7=p}) —1/2<7y <0.

Proof. Again, our conditions are just particular cases of the more general situation
considered in Ferreira et al. (1999); if 0 > v > p' then ¢co = —¢;1/2 and so the
above limit equals zero, as expected from the aforementioned general results. Note,
however, that under our conditions and taking w.l.g. a(t) and A(t) as in (3.4.2) and
(3.4.3), respectively, the result also follows. O
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We shall now prove Theorem 3.2.1. Then we will see that it also proves Lemma,
3.2.1.

Proof of Theorem 8.2.1. Let a, = k/(np,). Then
7 71/;)’11("5)
k zn — b(%)
An = - ) 1 An k
Pn(k) nmax{O( + An (k) &) )}

&"(k) a(%) U(%a") _ U(%) U(%) - U(Yn—k,n) —H/m k)
0’ 1+ v a2 n + n
v ooa(g) a(%) a(®)
which, by the previous lemmas, for large values of n, has the same limit behaviour
as

= —max
n

a(%)
v _1 v _1 1 1 1 —
[an _ay ((7%—p)2 {y>0} + {r<0} <1+ M)) A(E)
g g p TEp 2c2 g
ay—1 n B 1 n e
n . O(A(E)) _ ﬁ + op(ﬁ) + OP(A(E))] } . (3.4.4)

The reasoning is divided in the two cases, v positive and v negative. First
suppose v > 0. Then a,,” — 0 as n — oo and so (3.4.4) becomes

kgL ) al®)
A

| 3

[%ﬂl% (—77:2”,4(%”0(,4(%))) f}+0p(f)+o,,(,4( ))]}_l/ﬁ"(k) '

Using the expansions given in Lemma 3.4.2 this becomes

k l2 + 4:l1 Y+ 4 2[1 2 ’)’B ll n
21 1+ (- S M My — 12 4 L A=
n { o [ - ( lily - v o) * 2 + N2 +AG)

|3
\_/
SN—r
—_—
——
|
-
~
2
3
~
>
N

[M +al) (-77:2PA(Q)+O(A(%))) B o )+ op(Al3

v k VE Tk
that is,
k ,),B n _1/771 (k)
- ¥ ¥ M _ 1= b
o () i [ 4 mass - T2 4

3

5 B 1/4n (k)
= Pn {a%’Yn(k) (1 + g1 My + g2 Mo — ﬁ + g3A(E)> } (3.4.5)
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where g1, g2 and g3 are non zero real constants depending on v and p.
In the optimal case al_%(k) must converge to one in probability. Note that the
second factor in the main brackets converges to one. In fact, we know that there
exists a sequence k = k(n) such that ay % 1 (n = o0) in probability: take
for ko(n), for example, the optimal one in extreme value index estimation (for this
sequence we have 4, (ko) — v = O((ko(n))~1/2) and log(ko/(npn))/vke — O - for
the later see Remark 3.2.4.3.). Note that the power —1/4,(k) has no influence since
—1/4,(k) = —1/7 (n = 00) in probability. Therefore, as n — oo, if ap~ ") — 1,
then (a7~ ¥» (k) —1)/((y — An(k))loga,) — 1 in probability and so, at least in the
optimal case, the second factor in (3.4.5) does not contribute asymptotically. Hence
the simplified expansion

PrAL+ (v = An(k) log an + o((y = 4u(k)) log an)} /@

Disregarding terms of smaller order, we get

I v .
Dn {1 - ; m('?’_’)’n(k)) logan}

or,
Pn
Pn — 7(7 Yn(k)) log an, -
Consequently, the second moment of the approximating r.v. of (p,(k)/pn — 1)
is asymptotic to
(log an)zE(’Y - ﬁ/n(k))z

k var. c2 n
~ 1 2 Y 4 ""\2p
(o6 -2 (7 + bias?,, St ().

as n — 00, where we have used A(n/k) ~ c2p?/v (n/k)? and, var, and bias.,,, are
obtained from the expantion given in Lemma 3.4.2 (and from the covariance matrix
given in Lemma 3.4.1). Thus taking the derivative with respect to k in the last
expression and equating it to zero, one gets the result. For more details see Ferreira
et al. (1999), e.g. proof of Proposition 4.12.

Next suppose v < 0. Then a} — 0 as n — oo and so, by Lemma 3.4.2 relation
(3.4.4) leads to

k 4 2 Clll 1{7:p} n
Eligy i 2+ 2y + S l=ed (2
n { +7 [ Al + 2P + 2vcy (k)

Iy + 41 2l B
I R R

nh T BT R
o]}

71 1421 B
|:a'n, 2¢o {’Y p} +Op(

v v(p +7) (k) N 7
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or
k Iy +4l, 4 ) (211 2 ) L+ 55 =0 , 0
—qa,+ + My — | 5+ =5 | Mo+ —=2—FA(—-
n {a ( lils Yhls ) ' B y3) Pty (k)
el 1peyy o)~
—— —A(7)
2vc¢o k
that is,
k n ) —1/4n (k)
- v _
Pn (npn) {an + g4 My + gs M + geA(k)}
. . n —1/4m (k)
= Dn {az‘”"(’“’ +ay ) (94M1 +95 Mz + 9614(%))}
_ = (k) _ () nyyy e
Pn {1 + (an 1) +a, (94M1 + 95 M + gﬁA(k))}

where g4 and g5 are non zero real constants depending on «y and p; g¢ also depends
on ¢; and ¢z in the case v = p'.
Next we prove that

a
an "™ (94 M1 + g5 Ms + gs A(R))

;?;7'?" (k) -1

-0 (n — o0) (3.4.6)

in probability. Note that v — 4y, (k) = Op(g94 My + g5 M + g6 A(%))- Therefore (3.4.6)
is of the same order as
a aZ"(k)

an ™™ (y = A (k)

a) —
Y- '?n(k)

Zfﬁn(k) -1 ‘ _

log ay, / s
— a,ds
¥ = Fn(k) Am (k) "

Hence the numerator in (3.4.6) is of smaller order than the denominator, and so
(3.4.4) simplifies to

< (log a,)a™®=B7 50 as n — oo .

. n —1/4n (k)
Pn {1 +a, " (94M1 +g5M> + 9614(%))} . (3.4.7)

In the optimal case aj; ") (9aMy + gsM> + gs A(%)) must converge to zero in
probability and in fact there exists a sequence such that this holds (take for example
the optimal one in extreme value index estimation together with condition (3.2.14)
). So, expanding (3.4.7) again we get, neglecting terms of lower order,

a,” n
Dn {1 "5k (94M1 + g5 M> +96A(E))}
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or,
Dn n
Pn 761 (g4M1 + g5M2 + g(,'A(E)) .

Consequently, the second moment of the approximating r.v. of (p,(k)/p, — 1) is
asymptotic to

2y 2
Pn (TN E
?(k) E(94M1 + g5 M2 + ge A( A )
27 (wvar , A(y+p)?2p® n
- 2 E v 2 YTP)P \2p
jout (k) ( A + bias;, 77 (k)

as n — 0o, where we have used A(n/k) ~ ca(y+p)p/y (n/k)? and, var, and bias, ,
are obtained from Lemmas 3.4.1 and 3.4.2. Thus taking the derivative with respect
to k in the last expression and equating it to zero, one gets the result. For more
details see Ferreira et al. (1999), e.g. proof of Proposition 4.12. Note that in order
to assure that a minimum is in fact attained one must assume vy > —1/2. O

Proof of Lemma 3.2.1. Let a, = k/(np,). The lemma follows directly from the
proof of the Theorem. See (3.4.5) for v > 0 and (3.4.7) for v < 0, and the expansions

afterwards. Note that the conditions on r.(a,), ensure that a; An (k)

one in probability for the case v > 0, and that an, **® (O ( L (1/VE) + Op((n/k)f’))
converges to zero in probability in the case v < 0. O

converges to

Appendix. Adaptive bootstrap on exceedance probability es-
timation

Without going into details, we remark that theoretically the adaptive bootstrap
method to estimate ko(n) is still valid on exceedance probability estimation. The
proof follows the same line as in, e.g. Draisma et al. (1999) on extreme value index
estimation and Ferreira et al. (1999) on endpoint and high quantiles estimation.
One of the main steps is Theorem 3.2.1 in Section 3.2. In the following we shall just
give the main steps necessary to implement this method.

We want the value of k minimising E[(p,(k)/p, — 1)?] (although this is only
meant in an asymptotic sense, i.e. second moment of the approximating asymptotic
distribution), where p,, and the underlying d.f. are unknown. The ideia is to replace
these unknown quantities such that the optimal kq(n) is still attained. That is, the
proposed bootstrap method is based on minimising, over k = k(n), the sample mse
of (p%(k)/D. (k) — 1). From a bootstrap sample of size n, p% (k) is calculated from
(3.1.3) and p,, (k) is an alternative estimator of p,. For p,, (k) we still use (3.1.3) but

with
N [ 2, MOIMP
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in place of (3.2.1); similarly for (3.2.2). For MP just take j = 3 in (3.2.3). Then,
similarly as in Theorem 3.2.1, we need the variance and the bias of the limit dis-
tribution of 7, (k,n)vV'k (pn(k) — P, (k))/pn- Following a similar reasoning as in the
proof of Theorem 3.2.1 one gets

1+ L) >0
— 4 ( 72 7’7
vary = (1—7)>(1—67v+357" - 787 +727*) <0 (3.4.2)
I 27)(137) (14567 7
and
—p—+
S >0
Y—1l)p 1(__
272(1—y=p)(1—27-p)(1 -37—p) —1/2<y <pl(=p) <0
b.— _ —2417y—50y"+47v
R IR L R
_ —207+70y"—100y ol — ! and
P (2 (1—sm (i asasey V(=P > plan
-1/2<y<0.
(3.A.3)

The bootstrap procedure follows: Step 1) Select randomly and independently n;
times (n; = O(n'~¢), 0 < € < 1/2) a member from the sample {X1, Xs,...,X,}.
Indicate the result by X7, X5,... X} . Form the order statistics X7, < X3, <
< X2 and compute the quantities p,(k) and p, (k). We denote the resulting

ni,ni
quantities by p; (k) and p,, (k) for k =1,2,...,n1 — 1. Form g} , = (p;(k) /D, (k) —
1)2 on the basis of these bootstrap estimators; Step 2) Repeat step 1, r times
independently. This results in a sequence ¢, , ., k = 1,2,...,n — 1 and s =

,

1,2,...,r. Calculate £ Y27_, % . ; Step 3) Minimise %Zqzhk’s with respect to k
s=1

but reject values which are very small or very near to n,. Denote the value of k where

the minimum is obtained by kg(n1); Step 4) Repeat step 1 up to 3 independently
with the number n; replaced by na = (n1)?/n. So na is smaller than n;. This
results in kJ(na); Step 5) Calculate

—2 1+2ﬁ
]Aﬁo(n) — (kg(nl))2 (UC”"’? bws%ﬁ)

kg (n2) vary bias? ,

with 4 any consistent estimator of v (we have used (3.1.3) with & = 4/n) and,
P = pn, (k§) =logks(n1)/(—2logni +2logks(n1)) a consistent estimator of p. This
ko (n), which is obtained adaptively, is asymptotically as good as the optimal number
of order statistics in (3.2.15) (for further details we refer to Ferreira et al., 1999).
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Chapter 4

On optimising confidence
intervals for the tail index
and high quantiles

Co-author: Casper de Vries

Abstract. The aim of this paper is to obtain confidence intervals for the tail index and high
quantiles with their optimal rate. When obtaining confidence intervals for these quantities,
the common approach that we find in the literature is to use the normal distribution
approximation with a non-optimal rate. We propose to use the optimal rate, but then
additional problems arise, since a bias term with unkown sign has to be estimated. We
provide an estimator for this sign and the full programme to obtain these optimal confidence
intervals. Moreover, we demonstrate the gain in coverage, and show the relevance of these
confidence intervals by calculating the reduction in capital requirements in a Value at Risk
exercise. Simulation results are also presented.

4.1 Introduction

Let X1,X5,...,X, beii.d. random variables from some unknown distribution
function F', and denote the order statistics by X; , < X2, < --- < X, . Suppose
F satisfies the maximum domain of attraction condition (Fisher and Tippett, 1928;
Gnedenko, 1943), with positive extreme value index. In terms of regularly varying
functions, this is equivalent to that for some v > 0

1 —F(t.’L’) =1/

tlgg) m =T , for all > 0. (411)

Then F is said to have a regularly varying tail with index —1/v (i.e. 1-F € RV_y,,).

67
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For any non-decreasing function f, let f* denote its left-continuous inverse,
that is f< (y) = inf{z : f(z) > y}. Let U = (1/(1 — F))*. Consider the following
refinement of condition (4.1.1) (e.g. de Haan, 1994; de Haan and Stadtmiiller,
1996). Suppose there exists a function a, with constant sign near infinity and
lim; o a(t) = 0, such that

logU(tz) —logU(t) — ylogz P —1

tll)rgo o) = P forall z >0, p <O0. (4.1.2)

The following estimator of v was proposed by Hill (1975),

S
=

log Xp—in — log Xy . (4.1.3)

| =
s
I
o

It is well known that Hill’s estimator has, is general, large variance for small values
of k and large bias for large values of k. Hence, when estimating 7, one usually
looks for k balancing this trade-off.

Let k, be an intermediate sequence, i.e. k, — oo and k,/n — 0, as n — oo, and

Hyp, = Vkn (@ - 1) . (4.1.4)

Under condition (4.1.2) and if a(n/kn)vVkn — X, X € (—00,00), Hyk, converges
in distribution to a normal random variable with mean \/(y(1 — p)) and variance
1 (e.g. Hall, 1982; Dekkers et al., 1989). The best rate of convergence is attained
when a(n/k,)vkn, — X # 0, and in this case the limiting distribution has non-zero
mean.

Usually when using Hill’s estimator in applied problems, one simply uses (4.1.4)
with A = 0 in order to construct a confidence interval for v (e.g. Cheng and Peng,
2001 and Caers et al. 1998). In this paper we construct a confidence interval for
gamma, using (4.1.4) but with the sequence k, being the optimal rate of conver-
gence, in the sense of minimizing the asymptotic mean square error. This will be
done in Section 4.2. In order to implement this confidence interval, several problems
have to be solved: one needs an adaptive way to obtain the optimal sequence k,,
moreover one needs to estimate two new parameters consistently, the second order
parameter p and the sign of the asymptotic bias. For the adaptive choice of the
optimal sequence k,, we follow Danielsson et al. (2001). For the estimation of the
parameter p we follow Danielsson et al. (2001) and Fraga Alves et al. (2001). For
the sign of the asymptotic bias, in Section 4.3 we introduce a new estimator and
show its consistency. In Section 4.4 we obtain optimal confidence intervals for high
quantiles. From the results it follows that the reverse problem of estimation of tail
probabilities can be similarly worked out. We leave it to the reader. In Section 4.5
are simulation results and in Section 4.6 is a Value at Risk data analysis.

Related papers on confidence interval estimation are Caers et al. (1998) and
Cheng and Peng (2001). In the first paper the authors also use the bootstrap
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methodology to obtain the optimal k,,, though in a rather different way from what
we consider here, but then they end up considering A = 0 to obtain the confidence
intervals. In the later paper the authors try to find k, optimising the confidence
interval but their criterion is quite different from ours. They look for the optimal
sequence in the non-optimal range of values satisfying a(n/k,)vk, — 0. Later on
we discuss that even with regard to the coverage probability, to consider A = 0 is
a non-optimal choice. The authors also point out the importance of the sign of the
asymptotic bias but they do not discuss explicitly its estimation.

We restrict ourselves to the case p < 0, since optimality results for the choice of
k, are well established for this case.

4.2 Optimal confidence interval for the tail index

Let a(n/kn)vVkn — XA € R. Denote by ® the standard normal distribution
function and z, = @ (1 —«). As a first approach to construct a confidence interval
with significance level « for v, based on (4.1.4) and its limiting distribution, if we
solve —zo < Hy g, — A (7(1 — p)) < 24 in v we get

’?(kn)m - ﬁ < < '?(kn)v kn - ﬁ
Ra/2 + \/kn 7 —Za/2 + v kn ’

provided vk, — 2472 > 0.

Let k9 denote the 'optimal’ sequence, in the sense of minimizing the mean square
error of the limiting distribution (Hall and Welsh, 1985; Dekkers and de Haan, 1993).
Under our conditions this sequence is easily calculated if one assumes, moreover, that
the regularly varying function a behaves, asymptotically, as a power function,

(4.2.1)

a(t) ~ ct’, c#0, (4.2.2)
as t = oo. Then, our assumptions are equivalent to assuming Hall’s model
1— F(z) =Cz /7 (1+Dx"/7+o(x”/7)), C>0,D#0, z— o0

where, from (4.1.2) and (4.2.2) we have D = ¢y~!p~1Cr. Therefore (Hall and Welsh
(1985))

9 2\ 1/(1—2p)

Then it is easy to see that the value X\ for this sequence kO, is asymptotic to
sign(c)y(1 — p)/v/=2p. Then, in this case (4.2.1) simplifies to

A VES e AN
Zo/2 + sign(c)/v/—2p + /KY —Zq /2 + sign(c) /v/—2p + VEO
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Now, in order to obtain a confidence interval from this inequality, we need to ap-
proximate adaptively k2, and estimate p and sign(c). From Hall and Welsh (1985)
- Theorem 4.1, an adaptive choice k¥ can be used for which

7.0
:—g 51 (4.2.4)

For p we need a consistent estimator and for sign(c) an estimator sTg\n satisfying
P{sign =sign(c)} -1 (n — ). (4.2.5)

Then the following theorem holds.

Theorem 4.2.1. Suppose (4.1.2) and (4.2.2). Let lAcg satisfy (4.2.4), sign satisfy
(4.2.5) and let p be a consistent estimator for p. Then, as n — oo,

o (@(fcg) _1> _ _sign
v

n

~

converges, in distribution, to a standard normal random wvariable. Therefore, as
n — oo,

F(k9)\/ k9 (k9)\/ RS
P — = << — =
2o+ S 4[RO —Zas2 + S+ 1R

which gives an asymptotic confidence interval for v, with confidence coefficient 1— .

—»1l-a (4.2.6)

Note that for the cases where the true v is near zero a one-sided confidence
interval can alternatively be considered. The extension of our results to this case is
obvious.

Accuracy of the confidence interval. Denote the confidence interval based on
(4.2.1), where k,, is such that A = 0 and p is replaced by a consistent estimator, by
(%, & »Vn,k,)- In the following we shall see that the confidence interval (4.2.6) is

more accurate than (Zn, k"77nakn)'
Fix

T}Lnéo P(7 € (ln7k"a7n,k")) =1- a,
for each v > 0. Then, the probabilities of covering the wrong value +,
Py €1, 4. Tnkal) (4.2.7)

should be as small as possible, for each 4/ > 0. In fact for v/ # v and all sequences
kn with a(n/k,)vk, — A this probability converges to zero, since the lower and
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upper limits of the confidence interval converge to v in probability. Therefore next
we compare the probabilities of wrong coverage when v, /v = 1 (n — 00).
For the confidence interval (4.2.6) the probability of wrong coverage equals

,yl
P(—za -
/2,y

foo [ 3(RS) sign 7'> . sign "
<A\JRO [ B2l _ 1) = 1-In kO — == | < z,/9 ).
- ( Y V=2 5 " V=2 —Z/H)

Hence for sequences v/, with 1/k%(1—~/,/v) — v # 0, £00, this probability converges
to (2472 — v) — ®(—24/2 — v). Now take k, with a(n/k,)vk, — 0. Then for
sequences ) with v/kn (1 — 7% /v) = v* # 0, o0, probability (4.2.7) equals

P (_za/27_n + v kn (% _1) < V ];;n (M _1) Sza/gly?n + kn (77” —1))

v v

which converges to ®(zq/2 — v*) — ®(—24/2 — v*). Therefore in order to compare
the two probabilities take a common sequence, e.g. ;. Then in the first case the
probability of covering the wrong values converges to zero whilst in the second case
it is equal to (242 — v*) — ®(—24/2 — v*) > 0.

We have attempted to improve the standard results for obtaining confidence
intervals, by using the first term in the Edgeworth expansion for Hill’s estimator.
This has been done by Cheng and Pan (1998) - Section 4.1, in the situation without
asymptotic bias (i.e. with the number of order statistics used of smaller order than
k2). Even we have attempted to use an Edgeworth expansion for the distribution
of Hill’s estimator, approximated not by the normal but by an appropriate gamma
distribution, similar to Cheng and de Haan (2001).

For these two extensions we need the Edgeworth expansion in the situation of a
non-null asymptotic bias. This includes the case when the optimal number of upper
order statistics is used. In case of an approximation by the normal distribution this
Edgeworth expansion has been given by Cuntz and Haeusler (2001). The Edgeworth
expansion in case of an approximation by a gamma distribution is presented in
Appendix B below, but it turns out that in the case of non-zero asymptotic bias
the approximation by a gamma distribution does not lead to an improved rate. We
decided not to pursue this further refinement since it leads to the need to estimate
some new parameters and it seems not easy to do that in a way that can be useful
for applications.

4.3 Estimation of the sign of the bias of Hill’s estimator

For convenience, in this section we shall use the Hill process parameterised con-
tinuously. The following result was taken from Drees et al. (2000), Corollary 1.
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Lemma 4.3.1. Let k, denote an arbitrary intermediate sequence. Under condi-
tion (4.1.2), there exists a probability space carrying X1, Xo,... and a sequence of
Brownian motions W, such that

for all t,, — 0, satisfying k,t,, — co.

sup t1/2
tn <t<1

In this expansion for the Hill process, we call the term ¢=?/(1 — p)a(n/k,)Vkn,
the bias of Hill’s estimator. Note that if a(n/k,)vk, — X # 0, its asymptotic sign
is determined by the sign of the function a(n/k,), which equals sign(c) provided
(4.2.2) holds. For instance if t = 1, the sign of the expected value of the limiting
variable of vk, (¥ — ) equals sign(\/(1 — p)) = sign(c).

Let a,, b, and ¢, be intermediate sequences such that

an < by, < ¢y for all n, and ay /b, — v € [0,1). (4.3.1)

We suggest the following estimator for the sign of the bias,

b
— . . 1 Z" s
s1gn = s1gn (’Y(Cn) - m ’Y('&)) . (432)

Theorem 4.3.1. Assume (4.1.2), (4.3.1) and moreover that b, satisfies a(ﬁ)m —
0o. Then

P{s/z;n = sign(c)} = 1, n — 00.

Proof. Lemma 4.3.1 implies that

/ 9 ([bat]) ~ (7 T U lt—p) dt = 0,5,/ + a(5-)).

n/b'n v b" bn - n
Therefore,
2 n 200 2 n 1 by
. 7(Cn) b ,Lll 1 E?:an '7(7/) . ’Y(CH) - bnb_a" fan/bn ’Yn([bnt])dt
lim n—r = lim -
n—00 G(E) n—00 a(ﬁ)

b L (PR bn LAY
= nl_,oo{a(%) ( Ven  Vbu(bn — an) /an/bn t dt)

1 falH) b [, 1
+1_p<a(bl) —— /an/bnt dt>+0p(7a(ﬁ)m)}.

n

1

Since a, /b, — v € [0,1), we have that (b,/(b, — “”))fan/bn Wo(t)/tdt = O,(1).

Hence taking b, < ¢, such that a(;*)v/b, — oo, the first and last factors in the
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last equality go to zero, in probability. For the second factor, just note that under
the given conditions a(n/c,)/a(n/b,) > 1 and that (1/(1 - v)) [, t~*dt < 1, for all
v €[0,1) and p < 0. Hence we have that the second factor converge in probability
to some positive constant. O

Remark 4.3.1. Although we have excluded the case p = 0 in condition (4.1.2), the
results of this section are still valid for p = 0, provided b, < ¢, in (4.3.1).

Remark 4.3.2. Other proposals to estimate the sign could be using two consistent
estimators of v, for instance 4 = 4 and A = (2k,)"V/?

\/Ek ~1 (log Xp—in —log Xpn—k,n)2. Both admit expansions of the type 4; = v+

cikn 2Py + d; sa(n/ky) + op(k_l/z) + op(a(n/ky,)), where c;,d; are some known
constants and P; are normal (0,1) random variables. Hence, for large k, (i.e.
a(n/kn)kn"’* = 00) and with a(n/kn) ~ ¢ (n/ky)? we have

o 0

But typically one finds two kind of problems with this sort of estimators. First of all,
they are very sensitive to the choice of k. Commonly a plot of sign(§;%, * —1) versus
k frequently alter sign. Secondly, since these estimators have similar behaviour, e.g.
they have the same sign of the bias and predominance of one bias over the other, in
a plot of sign(4145 * — 1) these features turn out to be the most predominant.

4.4 Optimal confidence interval for high quantile

Suppose one is given a small probability p and one wants to estimate the quantile
z: P(X > z) = p. We are interested in studying the situations where p is indeed
very small, for instance where this small probability corresponds to an event that
has never been observed. More specifically, p = p, must depend on n (size of the
sample), since we use asymptotic theory, and we shall assume np,, — constant (> 0).

As before let k, be an intermediate sequence. To estimate a high quantile
Zn, = F< (1 — p,) we suggest the following estimator (Dekkers and de Haan, 1989;
Ferreira et al., 1999)

R k, \ (kn)
The following result is from Ferreira et al. (1999).

Lemma 4.4.1. Assume (4.1.2), (4.2.2) and np, —constant (> 0). Let ky, be an in-
termediate sequence such that a(n/kp)vVkn = XA € (—00,00) andlog(k, /npn)/VEkn —

0. Then
VEn ) (ﬁ(kn) _ 1) (4.4.2)

vlog(=-) \ zn
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converges in distribution to a normal random variable, with mean A/(v(1 — p)) and
variance 1.

Let 9k% denote the sequence k,, minimizing the mean square error of the limiting
distribution of (4.4.2). Then from Ferreira et al. (1999) it follows that (when v > 0)
940 ~ kO where k2 is from (4.2.3). Hence a consistent estimator of 7k9 is k2 from
Section 4.2, that is,

— 1. (4.4.3)

Moreover, also from this paper it follows that Lemma 4.4.1 still holds if &, is replaced
by k9.

Therefore, similarly as in Section 4.2, the following theorem holds. For more
details on the proof we refer to Ferreira et al. (1999). Motivated by an application
on VAR estimation, we consider here a one-sided confidence interval. The changes
to obtain a similar result for a two-sided confidence interval are obvious.

Theorem 4.4.1. Suppose (4.1.2), (4.2.2), and that np, — constant (> 0) and
log(pn) = o(n="/(1=2P)) as n — oco. Let kO satisfy (4.4.3), sign satisfy (4.2.5) and
let p be a consistent estimator for p. Then, as n — oo,

4(k9) log(m-)

converges, in distribution, to a standard normal random wvariable. Therefore, as
n — oo,

-1

Pla, <2 [1+

5(k9) 1o L sign
Alkn) o) (,  sign Sl-a (444)

\/ﬁ V=2

which gives a one-sided asymptotic confidence interval for x,, with confidence coef-
ficient 1 — a.

For a discussion on the accuracy of the confidence intervals, note that it follows
similarly as in Section 4.2.

4.5 Simulations

We evaluate the performance of the confidence intervals for the tail index and
high quantiles. For the estimation of the optimal sequence k,, we follow the bootstrap
algorithm proposed by Danielsson et al. (2001). This bootstrap procedure also
provides an estimator of the second order parameter, say p;. In appendix A we
mention the main ideas behind this bootstrap procedure.
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To estimate p we also use the following estimator proposed by Fraga Alves et al.
(2001). Let M3 (ky) = (1/ky) 3255 (log Xp_s.n — log Xp_n)® and

(2)
(1,2:3,0) log M (kn) — log ( M0=)) /2
Tn 3439 (kn) = MﬁZ)(kn) Mﬁs)(kn) .
o (B253) 1o (250 1

The estimator is given by

T,n(’1727370)(kn) —1
T,n(’172’370)(kn) _ 37

p2=3

provided 1 < 7230 < 3 (otherwise we shall say it is not defined). They proved
consistency under condition (4.1.2) and for k, (upper order statistics to use) satis-
fying a()vkn — oo

To estimate the sign of the asymptotic bias we use (4.3.2) with a,, = logn and
b, = ¢, =n/loglogn.

We considered i.i.d. pseudo random numbers from the following distributions:

(1) Student-t distribution with ¥ = 1 and 4 degrees of freedom, for which v = 1/v,
p=—2/v,a(t) ~ (2/3)I1* 2 if v = 1 and a(t) ~ (5/24)\/16/3t /2 if v = 4
(for the general formulas to obtain the scale constant of the function a we refer
to Martins, 2000). Hence the sign of the bias is positive.

(2) Fréchet distribution, F), ,(z) = exp{—((z — p)/o)~1/7}, for which we have, if
p#0and 0 <y <1then p = —v and a(t) ~ —(uy/o)t™7; if v = 1 then
p=—1and a(t) ~ (1/2— p/o)t=/o; if p = 0 or v > 1 then p = —1 and
a(t) ~ (v/2)t~!. We shall consider (u,o,v) equal to (0,1,1) and (1,1,1). Then
note that when v = 1 the sign of the bias equals the sign(1/2 — p/0o).

4.5.1 Simulations for the tail index

In Tables 4.1 and 4.2 are simulation results based on 500 samples of size n =
2000. In Table 4.1 are the boostrap results, namely mean and standard deviation of
k9 and mean and root mean square error of the estimates of v and p, and percentage
of times that the estimator of the sign of the bias yielded the correct sign.

In Table 4.2 are the results on confidence intervals of size 98%, 96% and 90%.
These where obtained from:

a 152 + p1 - (4.2.6) where the estimates of p are from the bootstrap procedure,

=

I::g + p2 (4.2.6) where the estimates of p are from Fraga Alves et al. (2001),

o

)
)
) k2 + p - (4.2.6) with true p and sign(c),
d)

k% + (A =0) - from (4.2.1) with A =0,
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kS A(k9) f1 P2 sign #(k9)
mean st.dev. mean rmse mean rmse mean rmse % true mean rmse
t1:y=1,p=—2,sign = +,z, = 636.6
200. 117. 1.00 .16 -1.31 .81 -1.01  1.00 100.0 706.1'  353.5!
ta:y=.25,p= —.5,sign = +,z, = 8.6
33. 37. .29 .08 - .55 .21 -.69 .19 100.0 9.1 2.9

Fo1:v=1,p= —1,sign = 4+, z, = 1999.5
414. 231. 1.03 11 -2.13 1.44 -1.26 .31 99.6  2470.6 1161.5

Fi1:v=1,p= —1,sign = 4+, z, = 2000.5
708. 247. .94 .08 -3.58 2.79 -2 -2 91.0 1634.8 714.6

T without extreme quantile estimate of 378782281
2 not defined in most of the samples

Table 4.1: Bootstrap estimates and percentage s;g\n equals the true sign, 500 samples
of size 2000 (see text for details).

e) (K2)® + (A =0) - from (4.2.1) with k, = (k¥°)® and A\ = 0. Note that (k2)*®
is a rather arbitrary choice, the only requirement that it should be smaller (of
smaller order) than k9.

For each confidence interval [ln X s ¥nk.)» its coverage probability
P(y € [v, 4 >Tnk.]) ~ 1 — a was checked. Furthermore it is checked if cover-

age is equally weighted in each tail, where for the left-hand side it is desirable that
Ply<y, kn) ~ a/2 and for the right-hand side that P(y < %,,.) ~ 1 —«a/2. In
Table 4.2 these are shown in the order: total coverage, left-hand side coverage and
right-hand side coverage. . . .

Comparing the confidence intervals (k9 + p1) and (k% + p), with (k2 + (A = 0)),
in general we consider the first two better (particularly for a small), since for these
the mean length are smaller (except for Fréchet (1,1)) and the coverage probabilities
are usually much closer to those expected. The fact that the mean lengths are larger
in the cases (kO + p1) and (k2 + p) for Fréchet (1,1), is due to the negative sign of
the bias.

Sometimes the confidence intervals with A = 0 seem to give close coverage prob-
abilities in the right tail but, note that a coverage probability of 100% is totally
non-informative, a situation so often obtained for this cases. Indeed what we get
are biased confidence intervals. For all distributions associated with positive bias
the upper limit of the confidence intervals are so large that they are too often larger
than the true value. On the other hand, the lower limits are so large that again, they
are too often larger than the true value. Systematically we see that the contribution
to the coverage probability, considering both sides, for being less than 100% comes
always from the wrong coverage of the lower limit. Similar considerations can be
made for the distribution associated with negative bias.

From these simulations we see that when the bias of Hill’s estimator is positive,
in general the right-hand side confidence intervals are quite precise; the same when
the bias is negative and for left-hand side confidence intervals.
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a=2% a=4% a=10%
Distribution mean mean Cov. Prob. mean mean Cov. Prob. mean mean Cov. Prob.

center length 98% 1% 99% | center length 96% 2% 98% | center length 90% 5% 95%
t1
kS + b1 .98 .36 91. 3. 95. .97 .31 85. 6. 91. .96 .25 72.  10. 82.
k2 + po .99 .37 92, 3. 95. .97 .32 87T. 4. 91. .96 .25 75. 9. 83.
ES +p 1.01 40 94 4. 98. 1.00 .34 89. 6. 95. .98 27 79.  10. 89.
B +(a=0) 1.07 .48 92. 8.  100. 1.05 40  88. 11. 99. 1.03 30 81. 15. 96.
(k)2 + (A =0) 1.13 77 99. 1. 100. 1.08 .64 97. 2, 99. 1.04 .48 91. 5. 97.
ta
kS + b1 .29 .23 80.  14. 94. .27 19 74, 15 89. .26 14 63.  20. 83.
kS + po .30 .26 85. 14. 99. .29 .21 82. 15. 97. .27 16 70.  20. 90.
ES +p .29 24 85 13. 98. .28 20 81. 14. 95. .26 15 68. 18. 86.
E+ar=0 .43 .48 79.  21.  100. .38 .36 75.  25. 100. .34 .25 67. 33. 100.
k2)*+(2=0) .48 .62 90. 10. 100. .41 .46 87. 13.  100. .35 .31 82. 17. 100.
Fo,1
k2 + p1 1.02 27 80. 17. 97. 1.01 23 75, 20. 95. 1.00 18 67. 23. 90.
k2 + po 1.01 27 82, 15. 97. 1.01 24 78. 18 95. 1.00 .19 68. 22. 90.
B +p 1.01 27 83, 14. 97. 1.00 23 78. 17 95. 1.00 19 69. 21. 90.
B 4+(=0) 1.06 .32 79.  21.  100. 1.05 27 76.  24.  100. 1.04 .21 67. 31. 97.
k) 4+(A=0) 1.10 .56 98. 2. 100. 1.07 AT 96. 3. 99. 1.05 .36 90. 9. 99.

1,1

B0+ p1 .97 .19 69. 0. 70. .96 A7 59, 1 60. .96 13 46. 3. 49.
B 4p .98 20 80. 1. 81. .98 A7 73, 2. 75. .97 14 BT 4. 61.
B +(A=0) .95 .18 61. 0. 61. .95 16 B2. 0. 52. .95 13 43. 1. 44
(k2)®+ (A =0) 1.02 .37 98. 0. 98. 1.01 .32 96. 1 96. 1.00 .26 90. 2. 92.

suorye[nuwiIs G §

LL
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a = 2% a = 4% a=10%

Distribution mean Cov. Prob. mean Cov. Prob. mean Cov. Prob.

upp lim 98% | upp lim 96% | upp lim 90%
t1
kS + p1 1631.7 93. 1268.5 85. 951.6 70.
ES + po 1584.8 93. 1215.9 86. 916.4 69.
kS +p 2225.6 96. 1434.0 92. 1022.6 7.
B+ (A=0) 6693.6 98. 2731.7 98. 1477.6 93.
ta
kS + b1 11.4 80. 10.6 73. 9.6 62.
k2 + po 11.7 85. 10.9 80. 9.9 67.
kS +p 11.3 82. 10.6 7. 9.6 64.
B +(a=0) 14.8 95. 13.5 93. 11.9 86.
Fo,1
kS + b1 5012.8 94. 4141.0 91. 3299.2 84.
kS + po 4769.2 95. 3919.2 91. 3143.9 82.
k2 +p 4478.5 95. 3739.8 91. 3028.7 81.
B+ (A=0) 9482.0 99. 6566.3 99. 4283.6 95.
Fi1
kS + 1 7045.5 87. 5099.8 81. 3274.5 66.
kS +p 11181.1 97. 5779.6 93. 3753.8 80.
B+ (A=0) 4209.4 83. 3801.4 75. 2697.5 53.

Table 4.3: Means of upper limits of the quantile confidence intervals and estimated
coverage probabilities, 500 samples of size 2000 (see text for details).

Our simulations indicate that the inclusion of second order information in the
construction of the confidence intervals gives significant improvement.

4.5.2 Simulations for high quantiles

In Table 4.3 are the results on one-sided confidence intervals of size 98%, 96%
and 90%. They are based on the same samples used in tail index estimation.

Similar considerations can be made on the confidence intervals for quantile. For
instance note the insensitivity of the confidence intervals with null bias for ¢3 and
Fb,1, where the coverages remain the same whether a = 2% or 4%. Note the very
large upper confidence limits when compared with the others considering the bias
information.

4.5.3 Additional considerations on the sign estimation

The sign estimator depends on the chosen values of a,,, b, and ¢,,. We found that
for many common distributions the choice of a,, =logn and b, = ¢, = n/loglogn
is quite reasonable. Mainly we have just chosen simple sequences verifying the
conditions of Theorem 4.3.1.
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4.6 Data analysis

We started the paper by noting that it is well known that estimators which
balance the asymptotic bias squared and variance yield the lower asymptotic mean
square error. Nevertheless, in practice confidence bands are commonly based on the
estimators evaluated at the asymptotically suboptimal number of order statistics
(taking A = 0), such that the factor with sign is omitted. Here we demonstrate the
relevance of using the confidence bands for the quantiles using the optimal number
of order statistics on actual data. It is shown that these can yield a considerable
reduction in capital loss estimates.

We used daily price quotes over the period 1-1-1980 to 14-5-2002 on three quite
different financial series, each of them comprising 5835 observations. The first con-
tract is the US dollar per UK pound spot foreign exchange rate contract, abbreviated
as the forex contract. The second series is the S&P500 total return index, and the
third contract is the Dutch Nedlloyd share price. The latter contract is known to
be very volatile due to the cyclical business of sea transport, while the US index
is naturally better diversified and hence less volatile, compare e.g. the S&P and
Nedlloyd quantile estimates at p = 1/n given in Table 4.4. The forex contract is
also of interest since forex risk is an important risk driver in international portfolios
of pension funds. The daily price quotes p; are used to compute daily continuously
compounded returns r; by taking the logarithmic first differences of the price series,
i.e. r = In(pe/pr—1). Since forex data for currencies from countries with similar
monetary policies are known to be symmetrically distributed, we used the absolute
returns for the forex series (except for the few zero quotes). Stock returns generally
exhibit a positive mean due to positive growth of the economy. Therefore for the
stock return data we focussed on the loss returns only. The loss returns comprised
approximately 50% of the data.

In Table 4.4 the tail parameter estimates are displayed. The gamma point es-
timates indicate that the number of bounded moments are between 3 and 5. We
record both the bootstrap based rho estimate from Danielsson et al. (2001) as p1,
and the one based on Fraga Alves et al. (2001) recorded as po. It can be seen
that these differ quite considerably, but as we will see later, this difference is not so
important for the construction of the confidence bands as is the inclusion of the sign
correction factor. Nonetheless it is worth mentioning the closeness of all the esti-
mates obtained from po. The subsample bootstrap estimates of the optimal number
of order statistics k0 is on the low side for the first and third series. The procedure
sometimes runs into boundary problems due to insufficient data. In case of the
forex contract, the plot of the bootstrap constructed mean square error reveals the
surface is very flat over the range between k = 8 and 20 approximately, so that the
global minimum is difficult to locate. The mean square error plot for the S&P series
reveals a unique and clearly identifiable minimum, while the forex and Nedlloyd
mean square error plots have multiple local minima for small values of k.

The confidence bands for the tail index gamma are displayed in Table 4.5. We
give three different bands at three different confidence levels (at the 2%, 4% and 10%
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Series k2 (k) p1 p2 sign T,_30 #(k%) at p=1/n
forex 8 0.201 -0.310 -0.639 + 0.028 0.043
S&P 225 0.308 -1.263 -0.711 + -0.016 -0.090
Nedlloyd 12 0.255 -0.430 -0.725 + -0.106 -0.201

Table 4.4: Parameter estimates

series a=2% a= 4% a=10%
LL UL LL UL LL UL
forex
signcorr. .09 .32 .09 .28 .10 .23
nocorr. 11 1.14 12 .74 .13 .48
signcorrA(FA) .09 41 .10 .34 11 .28
S&P
signcorr. .26 .35 .26 .34 .26 .33
nocorr. 27 .36 27 .36 .28 .35
signcorr.(FA) | .25 .34 .26 .34 .27 .33
Nedlloyd
signcorr. .13 .40 13 .36 14 31
nocorr. .15 .78 .16 .63 17 .49
signcorr.(FA) | .13 .45 .14 .40 .15 .33

Table 4.5: Tail index confidence bands

level respectively). The first band is the sign factor corrected (optimal asymptotic
mean square error) band, the second is the zero A based band used in most studies.
The third band is also sign factor corrected, but where ps is used in constructing
this band rather than p; which is used in the first band. There are some differences
between the first and last band, but the most glaring differences are in comparison
with the second band. It appears that if one does not correct for the sign factor
the confidence bands are considerably larger. This is basically due to a larger upper
limit UL, the lower limits more or less all coincide. But the exception is the S&P
series, where all are quite close. The latter is due to the larger p values, see (4.4.4)
for the influence of the second order parameter p. On the other hand, the larger is
kO the lower is the influence of the second order components.

A confidence band for the quantile estimates hinges of the choice of the quantile.
We decided to report the quantiles located at the border of the sample, i.e. we
took p = 1/n. Results are in Table 4.6. As in the previous table we report three
different type of bands. Since these are about the possible loss, we report the left
one-sided confidence interval. To indicate that we worked with the absolute returns
in case of the forex series, the loss quantiles are reported positively in this case.
Again the band based on the zero A presumption yields much higher loss limits at
the desired confidence level. What does this mean economically speaking? Consider

1Some studies may on purpose prefer the estiamtes evaluated such that A = 0, since the criterion
function gives more (negative) weight to the asymptotic bias term. For these cases it is difficult to
pick a specific number of order statistics, since such studies usually do not provide an automatic
procedure for picking the number of order statistics. Hence, even if the sign factor is ignored in
the construction of the confidence band, we still use the same number of order statistics as for the
case when the sign factor is included.
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series #(0) at p=1/n  Ta—ow Taca% Ta—=10%
forex .043

signcorr. .048 .046 .043
nocorr. .062 .053 .053
signcorr.(FA) .052 .049 .045
S&P -.090

signcorr. -.107 -.103 -.097
nocorr. -.116 -.112 -.105
signcorr.(FA) -.104 -.100 -.094
Nedlloyd -.201

signcorr. -.245 -.229 -.209
nocorr. -.323 -.297 -.263
signcorr.(FA) -.259 -.242 -.219

Table 4.6: Quantile confidence bands

the case of Nedlloyd, where an investment bank has taken a stake of 10 million in
the company. From the first column labeled "g(k%) at p = 1/n” in Table 4.6 one
sees that once per 22 years there is a day on which the investment bank loses two or
more million of the ten million investment. But taking into account the uncertainty
pertaining to this estimate, one has to add another half million at the 2% level if
one uses the bias corrected band. The band without the correction term requires
quite a bid more, i.e. at least 1.2 million extra! For the case of an index investor
with 10 million invested in the S&P composite, the extra loss stemming from the
use of the confidence band without correction factor is a more moderate (an extra
hundred thousand).

Appendix A. Tail index and quantile bootstrap estimation

The adaptive bootstrap method proposed by Danielsson et al. (2001) is a two-
step sub-sample bootstrap method. From a sample of size n, in a first step take r
independent bootstrap sub-samples of size n;, where n; must be of the order n!—¢,
0 < € < 1/2. For the simulations we took ¢ of about .05 in all cases. For r we used
500. Let '4(k,) and 24(k,) be two consistent estimators of . Then, let

r

. 1 ok 2~k
ki = argmin - Z (1% (k) =>4 (k))

i=1

2

where 147 and 24} are the estimates based on the i-th bootstrap sub-sample of size
ny1. In a second step, repeat step 1 but with n; replaced by ny = n?/n, to get k3
say. Then, it is shown that
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k3, 4(7k2) 1 &(7k2)
mean st.dev. mean rmse mean rmse mean rmse
156. 130. .94 .19 -1.08 1.08 621.0 332.4

Table 4.A: Bootstrap estimates, t; : v = 1, p = —2,sign = +, x,, = 636.6.

is a consistent estimator of k2, where C(v, p) is some known constant depending on
~ and p. To estimate p it is shown that

log kT
—2logn; + 2logk}

p=

is a consistent estimator.

When estimating quantiles a similar algorithm can be used, where '4(k,,) and
24(k,,) are replaced by quantile estimators. Still, since k2 /9% ~ 1 both procedures
with gamma or quantile estimators provide a consistent estimator of 7k9.

In Table 4.A are the bootstrap results from the algorithm using the quantile
estimators, for ¢t; distribution. Compare this results with the ones in Table 4.1.
The quantile estimates in Table 4.A are more accurate, but the p (and ) estimates
are less accurate. It turns out that in terms of confidence intervals, where all this
estimates are used, in general we find that the use of the algorithm with quantiles
brings no significant improvement.

Appendix B. Penultimate approximation of H,,

We shall need to extend condition (4.1.2) up to one more order. That is, suppose
there exists a function by, with constant sign near infinity and lim; . b1(t) = 0,
such that

log U(tz)—logU(t)—ylogz  zF—1
a(t)

Jim b D) P =L,y(z), forallz>0,7<0 (4B.1)
where
1 zrtn—1 2r—1
Lpn(z) == ( - ) .
n\ p+n P

The following lemma is an immediate consequence of Lemma 2.1 in Drees (1998a);
see also Appendix A in de Haan and Pereira (1999).

Lemma 4.B.1. Suppose (4.B.1). Then there ezists a function b(t) with b(t) /b1 (t) —
1, as t = oo, with the property that for every e1,€e2,€3,e4 > 0 there exists a to such
that for t > tg, tx > tg

log U(tz)—log U(t)—ylogz _ zP—1
a(t) P

lim supz™ 7P~

t—=00 551 b(t) —Lyn(2)| <e2 (4.B.2)
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and

MR
li —pmn—es | 2 - . 4B.3
Jm supa b | < (459)

We are interested in results for the optimal sequence k9 in (4.2.3). For simplicity
we will give results only when the equality in (4.2.3) holds and for auxiliary functions
b(t) ~ cpt", as t — oo. Still, the main lines of the proofs can be adapted to the
more general cases. Therefore, in this appendix we define

kS = [y’ (1= p)*/(—2p )M/ 1 =20) =20/ (1=20), (4.B.4)
Then
a(n/k)\/kO — %, as n — oo. (4.B.5)
Let f,, be defined by
' [atn k) - TR s a0, (186

Then b(n/k2)/ fn — Az (#0).

Lemma 4.B.2. Ifk{ satisfies (4.B.4) and f, satisfies (4.B.6) then, forn > p, there
exists a positive sequence t, — 0 such that

P (|k%, -1/ <
lim (KYn-kg,n/m = 1] < tn) =0, (4.B.7)
n—00 fn

where {Y; n}?_, are the n-th order statistics from the distribution function 1 —z~*,

z > 1.

Proof. Take t, = n(=9/2/(1=20) () < § < 2(n — p). Then the result follows easily
from Lemma 2 in Cheng and de Haan (2001), O

Theorem 4.B.1 (Gamma approximation). Assume (4.B.1) and let k2 and f,
be as in (4.B.4) and (4.B.6), respectively. Then, for n > p,

. P(H,po <) —Tho (kg + (x - %) \/@)

n—oo fn

- Gotntvmorrn) e (- 5) 6By

uniformly for all x, where Ty is the gamma distribution function with k degrees of
freedom and ¢ is the standard normal density function.
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Proof. Although we need more refined assumptions, many of the ingredients for the
proof were taken from Cheng and de Haan (2001). As in this paper we use the rep-
resentation {X;}5°, & {U(Y7)}2, and assume §(k) = (1/k) Ef;ol logU(Yn—in) —
log U(Yy—k,n). For simplicity of notation, we will wright k for k2 throughout.
Using the same arguments as in Cheng and de Haan (2001), if we condition
P(Hy < z) on the event |kY,—kn/n — 1| < t,, t, — 0 positive, then to evaluate

lim ! {P(Hn,k <z)—-T% (k + VEkz — sign(c) \/——Qp)}

n—oo
is enough to consider
P (Hyp < a||kY kn/n—1] <t,) — Tk [k + VE(z — sign(c) /,/——2p)]

lim .
n—o0 fn

Replace t by Y,,_,, and @ by Y,,_; /Y5 _k,n. Then from Lemma 4.B.1, eventually
for0<i<k-—1,

log U(Yn—i.n)—log U(Yn_k,n)—'ylog(;,"_"’" ) (;f"—"’" )"—1

n—k,n

a(Yn_k,n) p _L (Yn—i,n )
b(Ynfk,n) o Ynfk n

)

Y. . Y+pter
< e ( - ”") (4.B.9)

If |kY—k.n/n — 1] < ¢, then

kYn—k,n

- ) < 1= pta(1+0(1))

14 pa(1 4 0(1) < (

Moreover as in Cheng and de Haan (2001), if n is so large that (1 —¢,)" ¢ <1+¢
and (1+1¢,)" ¢ > 1 — g, since b(t) € RV,

(1-¢)%b(n/k) <b(Yn—k,n) < (1 +€)*b(n/k).

Also from (4.B.3), with ¢ replaced by n/k and « by kY, /7, we get the inequalities

o) G {—2u = 4+ et + 0+ pta) b+ 145t + (0]
< a(Ynfk,n) <
o) 03 {euta = (o 0+ o)) = =)} + 1= gt +0(0)]
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Hence for |kY,,—g,n/n — 1| < t,, we get by summing over k in (4.B.9)

a(n/k)
vk

p
'CZI(:—;:) TS (e (e
i k i—0 P,TI n k,n Yn—k,n
k—
1 n—
< n, {10g< Zn)—].}.
kz:O n kn

Similarly for the upper inequality. Define

[b(k){ —es(1= (p+n+es)tn) + %(1+ptn)}+1+ptn+o(tn)]

[u

3 sign(c) sign(c)v(1 — p) 1
T ( ZE_1> ./—2p+[a( k- ~2p ]7(1—/))
+a(%)\/§tnﬁ(l+o(l))
n n. [ —&4 —£)2
+a(E)‘/Eb(E){ ;—‘(Itép/)n e 75)

[E . S— oo

and
k—1
1 exp(pE;) — 1 1 ]
@ = \/Eg[ 7 v =)
b(n/k) o~ { (1-¢)? { &
+ —erexp((y+p+e1)B) + —————
7 ; 5 2exp((y +p+e0)Bi) + 7 — ——
exp((p+n)E;) — 1 1 exp(pE;) — 1 1
+ - - +
n(p +mn) n(l—p—n) np n(1—p)
e, [exp(pE;) — 1 1 ] }
+(—e4+ - - 1+4+0,(1
(e n)[ P v(1 - p) (1+,(1)
k—1
ptn [exp(pEi) -1 1 ]
+£2 - 1+ 0,(1)),
k ;0 P i—p) o)
where Eg, E1,...,Er_1 are ii.d. standard exponential. Hence

P{Hn,k S 37| |kYn—k,n/n - ]-| S tn}
< P(fw <o+ evha(n/k)fa) + P (Q < —evEfa),
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and the rest of the proof follows by the same arguments as in Cheng and de Haan
(2001). O

Corollary 4.B.1 (Normal approximation). Theorem 4.B.1 is still valid if one
replaces in (4.B.8), Tyo (k9 +-1/kQ) by ®(-), where ® is the standard normal distri-
bution function.

Proof. The result follows from Cramér’s theorem, which reads in our case as, I'y (k+
zVk) = ®(x) + (1 — 2%)é(x) /(3Vk + o(1/Vk), uniformly for all z, as k — oo, and
the fact that f,/k% — oo. O

Cheng and Pan (1998) and Cheng and de Haan (2001) gave one-term Edgeworth
expansions for the distribution of Hill’s estimator, the first with a normal approx-
imation and the second with a gamma approximation. Both papers only consider
the situation v/kna(n/k,) — 0. Although their conditions on the growth of the
intermediate sequence k, are not exactly the same, sometimes they overlap. For
instance when k,a(n/k,) — 0 and logn = o(k,) the gamma approximation turns
out to have a better rate (for more details and other cases see these papers).

More recently Cuntz and Haeusler (2001) gave an Edgeworth expansion with nor-
mal approximation and with no further conditions on k, than just vkna(n/k,) —
A € [0,00). Comparing their results with ours, it turns out that when v/kna(n/k,) —
A € (0,00) the gamma and normal approximations have the same rate. In Theorem
4.B.1 we give the gamma approximation when the second and third order parameters
verify p < 1. To check that indeed Corollary 4.B.1 coincides with their Edgeworth
expansion with k9, take their constants C, C; and C3 equal to, respectively, 1, 1/n
and —1/7n. For n < p the proof of Theorem 4.B.1 indicates that we would obtain a
normal instead of gamma approximation, which leads to no improvement towards
the Cuntz and Haeusler results.



Chapter 5

On maximum likelihood
estimation of the extreme
value index

Co-authors: Holger Drees and Laurens de Haan

Abstract. We prove asymptotic normality of the so-called maximum likelihood estimator
of the extreme value index.

5.1 Introduction

Let X1, X5,... be independent and identically distributed (i.i.d.) random vari-
ables (r.v.’s), from some unknown distribution function (d.f.) F. Denote the upper
endpoint of F by z*, where 2* = sup{z : F(z) < 1} < o0, and let
F(t+z) - F(t)

1-F(t)
with 1 — F(t) > 0, ¢t < z* and = > 0, be the conditional d.f. of X — ¢ given X > t.

Then it is well known (Balkema and de Haan, 1974; Pickands, 1975) that up to scale
and location transformations the generalised Pareto d.f., given by,

H,(z) =1— (14 ~yz)"'/7, (5.1.2)

Fiz)=P(X <t+z|X >t)= (5.1.1)

z>0ify>0and 0 < z < —1/vyify < 0 (for vy = 0 read (14~yz)~'/"7 as exp (—z)),
can provide a good approximation of conditional probabilities like (5.1.1). More
precisely, it has been proved that there exists a normalising function o (t) > 0, such
that

Jim Fy(zo(t)) - H,(2)

87
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for all z, or equivalently

lim sup |Fy(z) — H,(z/o(t))|=0 (5.1.3)
=T g<p <z —t

if and only if F is in the maximum domain of attraction of an Extreme Value d.f.
(Gnedenko, 1943), commonly denoted by F' € D(G,).

Under this set-up it comes out that a major issue for estimating extreme events
is the estimation of the extreme value index «y. A variety of procedures to estimate
it are now available in the literature (e.g. Hill, 1975; Dekkers et al., 1989; Smith,
1987), although there are still open problems. Quite often the accuracy of these
estimators rely heavily on the choice of some threshold but, it is not our aim here
to address this type of optimality questions.

The maximum likelihood estimator (m.l.e.) of +y is one of the most common ones.
For a sample of size n let X1, < Xo, < ... X, , be the ascending order statistics.
From the GP approximation, it becomes clear that we shall base our inferences on
some higher order statistics, say (Xpn—k,n, Xn—k+1,n,--- »Xn,n). Consider the one
to one mapping

Yo = Xn—k,n
Yi = Xn—k+1,n - Xn—k,n

Yy = Xn,n - ank,n-

Any inference based on maximizing the likelihood of
(Xn—k,ns Xn—k+1,ms--+ ,Xnmn) is equivalent to considering the likelihood of
(Yo,Y1,...,Y%). Now the distribution of (Y7,...,Y%) given Yy equals the distri-
bution of (Yy%,...,Y}";), where these are the order statistics of an i.i.d. sample
Yy, ..., Y) with common distribution Fy,(z) = P(X < yo + z|X > yo) - see e.g.
Theorem 2.4.1 in Arnold et al. (1992). Then the common approach is: first to
factorise the distribution of (¥7*,...,Y}*) and to use the GP approximation from
(5.1.3), second to ignore the factor related to the marginal distribution of Y; in the
likelihood of (Yp,Y1,...,Y)). Summing up, given some threshold yo, the so-called
m.le. of v (and o) is obtained by maximizing in v (and o), Hle h(yi,--- ,yk)
where h, ,(y) = 0H, ;(y)/0y. The m.l. equations are then based on

¥y

Bloghy,o(y) _ 1 1 T
%_?bg(ugy)—(qﬂ)@_o

_

o o ¥

where for v = 0 these equations should be interpreted as

The resulting m.l. equations are as follows (with a similar interpretation when
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1 X'n.—i n*Xn— n
;“:1 L log (1 + X Xniv1,n — ank,n)) — (% + 1) =z +1, ko)

Z 7?2 1+ 2 (Xn—it1,n—Xn—k,n)
k 1 2(Xn—itin—Xn—k,n) _
2 (7 + 1) T T (Komiin Xoem) = F

(5.1.4)

which can be simplified to, if v # 0,

5> i -
k =1 1+ T (Xn_it1,n—Xn—k,n) y+1?

{ % E{:l log (1 + %(Xn7i+1,n - ank,n)) =7

and the maximization is over (v,0) € (—1/2,00) x (0, 00).

From the above reasoning it follows that the m.l.e. of  is shift and scale invari-
ant, and the m.l.e. of ¢ is shift invariant.

Next we sketch the proof of the asymptotic normality. Under the given - usual
- conditions ( see (5.2.1), n — o0, ky,, intermediate sequence) we have

(M) - (T i) (5.0.5)
t€[0,1]

a(") Yo t€[0,1]

where (Qn(t))tco,1] is a distributionally equivalent version of the process
(Xn—[knt],n)tcl0,1], {Yn(t)} is an asymptotically Gaussian process of known struc-
ture (Lemma 5.3.1), «yo is the true parameter and a is a suitably chosen positive
function. Hence for all ¢ € [0, 1]

1— ¢
= 1+ (2 - + 40 LE2Y,, (1 (5.1.6)

k

where 6 = o/a("=). Now if the sequence of solutions (7, &) satisfies

Y= = Op(k;1/2) and 6-1= Op(k_1/2)a

n

one can prove by using a construction similar to (5.1.5) that

C= inf ¢o|14 2% wnl)
1/(2kn)<t<1 5 a(k)

with probability tending to 1 (Lemma 5.3.2). This implies (use (5.1.6) for the first
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equality)
log | t7° 1+1Qn(t~)_Qn(1)
o a(3r)
2 1-t Y172
=1 1 = - o~k eV (t
og (14 (2 =) T2+ 0 L v,
2 11— 7 —1/2 —1/2
= (=z—- 17—k 7Y, (t k
(3 -70) == TRV + 0y (h71)
and
1
A TS

1 — ¢
= (1 - (l - 70) — 0L p=12y (1) + o,,(k;l/?))
g Yo g

where the o,-term is uniform for 1/(2k,) <t <1 (proof of Proposition 5.3.1).

Hence, up to a op(kn 1 %)-term we are able to turn the equations (5.1.4) into
linear equations which can be solved readily. The proof in case vy = 0 requires
longer expansions but is similar. The statement is in Theorem 5.2.1. In Theorem
5.2.2 an equivalent explicit estimator is constructed for the case vy = 0.

Proofs of the asymptotic normality of the m.l.e.’s of v and ¢ are given in Smith
(1987) and also in Drees (1998a) in the case v > 0. Nonetheless we consider that
some proofs are not easily understandable or that some of the conditions are some-
what restrictive. In this paper we present a relatively simple direct approach to
prove asymptotic normality of the m.l.e.’s of v and ¢. They are based on some re-
cent results on strong approximation on the empirical tail quantile function (Drees,
1998a).

Throughout we shall denote F'*~ the generalised inverse of F', —; convergence
in distribution and —, convergence in probability.

5.2 Asymptotic normality of the maximum likelihood esti-
mators

Assume that there exist measurable, locally bounded functions a, ® : (0,1) —
(0,00) and ¥ : (0,00) = R such that

F(1—te)-F~(1—t) _ g=70_1

. a(t) Yo _
ltlﬁ’)l 0 = U(z), (5.2.1)

for some vy > —1/2, for all t € (0,1) and = > 0, where z — ¥(z)/(x~7 — 1) is not
constant, ®(t) not changing sign eventually and ®(¢) — 0 as ¢ | 0. Then, according



5.2 Asymptotic normality of the maximum likelihood estimators 91

to de Haan and Stadtmiiller (1996), |®| is —p-varying at 0 for some p < 0, i.e.
limg o ®(tx)/®(t) = =7 for all x > 0, and

(z=(0t0) — 1) /(o +p) ,p<O
U(z) =< —z " log()/v0 Yo#p=0 (5.2.2)
10g2 (.CL') Y0 =p = 07

provided that the normalising function a and the function ® are chosen suitably.
Condition (5.2.1) is a second order refinement of F' € D(G,,). Still, it is a quite
general condition, satisfied for all usual distributions satisfying the max-domain of
attraction condition.

We assume througout that &, is an intermediate sequence, i.e. k, — oo and
kn/n — 0, as n — oo.

Theorem 5.2.1. Assume condition (5.2.1) for some o > —1/2 and that the inter-
mediate sequence k, satisfies

®(k, /n) = O(k;1/?). (5.2.3)

Then, the system of m.l. equations (5.1.4) has a sequence of solutions (4y,6,) that
verifies, as n — 00,

ki (9 = 0) = (%7%1)2%/ 2<I>(];—") /0 (70 = (270 + 1)£27°) T(t)dt
(’y + 1)2 1 70 Yo —\(70
—*d OT/O (t — (270 + 1)#? ) (W(l) —¢+ +1)W(t)) dt (5.2.4)

5 +1. .,k ! A
g2 On ) _ 00T Lp2gEn / + 1)(270 + 1)8270 — £70) U (¢)dt
L (a(’“;) ) ke [ (Go+ D2 +1) ) ¥(t)

e /1 (0 + 1)@y0 + 1) = #°) (W(1) =t~ OW (1)) dt,  (5.2.5)
0

Yo

d

where for vo = 0 these equations should be interpreted as their limits when v — 0,
i.e. for vo =0,

kny [
k125, + kkﬂ@(?)/ (2 + logt)T(t)dt
0

—d —/01(2+10gt) (W@) -t 'W(t)) dt (5.2.6)

ky/? (ﬁ - 1) - k;/“‘@(’;—") /0 (3 + log t)¥(t)dt

—d /01(3 +logt) (W(1) — t~'W(t)) dt, (5.2.7)
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where W is a standard Brownian motion. Moreover, any other sequence of solutions
(Ak,0%) satisfies k}/zﬁl;; — Yo| —p 00 or k,l/2|&n/a(kn/n) — 1| =»p 0.

Remark 5.2.1. The term ”%Lolﬁki/zé(%) fol (70 — (270 + 1)t27°) ¥(t)dt in (5.2.4)
is a bias term. It vanishes if k}/zé(%") — 0. Similarly for (5.2.5)-(5.2.7).

Remark 5.2.2. Note that the m.l. equations for v = 0 lead to Ele X2/(2k) =
(i Xi/k)

Corollary 5.2.1. Under the conditions of Theorem 5.2.1 and if

k;ﬂ@(’%") —AeR, (5.2.8)
the solutions (5.2.4)-(5.2.7) verify
1/2 Yn = Yo
k, [ o Jalln /m) — 1 ] =4 N, X), (5.2.9)
where N denotes the bivariate normal distribution, u equals
T
p(v0+1) 1—2p+y0—py ;
[y (1,,%)(%0,%{’)] »if p <0,
[1770_1,11 57'f705£p:05
[270] ,Zf’)’():p:()

and

Z:[ (1+%)* —(1+%) ]
—1+v) 2+2v%+% |

Remark 5.2.3. When comparing our results to those of Smith (1987) we see that
the covariance matrix is the same except for the variance of the scale estimator. It
is more difficult to compare the bias in both papers since the set-up is somewhat
different.

We now show that if 79 = 0 the m.l.e.’s are equivalent in some sense to explicit
estimators. Define

kn—1
. 1 .
mgi]) = H ; (ani,n - ankn,n)]a J= 152
Define
N 1 (mg))Q —1
'7*—1_5(1 m%z) )
and
.k 2(mi))?
() ==
n my

Let (AnmrEe,mLE) be a sequence of solutions of (5.1.4) satisfying Theorem 5.2.1.
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Theorem 5.2.2. If F is in the class of distributions that satisfy (5.2.1) with v =0
and if (5.2.3) holds, then

k2 (s — AmLE) —=p 0

~ k_n A
kL2 —“*(n)kn"MLE —, 0.
a(w)

Remark 5.2.4. If, in addition, (5.2.1) holds with p < 0 and if sup{z|F'(z) < 1} > 0
then, provided

and

a(te)

n

= o(k;1/?), (5.2.10)

n

we also have
kY2 (Aaronr — Amre) —p 0
where (Dekkers et al., 1989)

1 (M(l))2
A 1 n —1
’YMOM_Mr(;)’*']-_g(]-_ 7(12) )

with M) = ﬁ Zf;o_l(log Xn—in —1log Xp_k. n), j = 1,2. A similar statement

also holds for the scale estimator. Condition (5.2.10) is more restrictive than con-
dition (5.2.3); moreover no bias appears. We prove this remark in Section 5.3.

5.3 Proofs

Given (5.2.1) and (5.2.3), from Theorem 2.1 in Drees (1998a) one can find a
probability space and define on that space a Brownian motion W and a sequence of
stochastic processes @, such that: (i) for each n, Qn(t) =4 Xn_[k,4,n, t € [0,1], (ii)
there exist functions @(kn/n) ~ a(kn/n) and &(%2) ~ (%) such that for all ¢ > 0

n

sup $r0+1/24e Qn(t) —F<(1 - an)
te[0,1] a(%ﬂ)
0 =1 o W(kat) | sk
Y L S O O ALV YA 1
( Yo ¢ . + &( - ) (t)) ‘

n

k
=o0,(k;'/?) + op(@(?)), as n — oo.

A similar expansion is also valid for g < —1/2. Define

Yo (t) = kL/2 (Q"(t;(;_"?n(l) - tﬂ;)_ 1) (5.3.1)

(read (t77 —1)/70 as —logt, when vy = 0). Hence we have the following lemma.
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Lemma 5.3.1. Suppose (5.2.1) and that the intermediate sequence k, satisfies
(5.2.3). Then, for alle >0 as n — oo,

ky
2w

+op (1)t 0+ 1/242) (5.3.2)

V(t) = Wn(1) —t=0orDW, (1) + kL/28(

where Wy, (t) = k;1/2W(knt) is a standard Brownian motion and the op-term is
uniform for t € [0, 1].

From this lemma the following corollary follows easily.

Corollary 5.3.1. Under the conditions of Lemma 5.8.1, for all e > 0 as n — oo,
Y, (t) = O,(1) t~(ot+1/2+e) (5.3.3)
where the Op-term is uniform for t € [0, 1].

Remark 5.3.1. Lemma 5.3.1 and Corollary 5.3.1 both with (1 t=(0+1/2+)) in
stead of only ¢t~(70+1/2+¢) are also valid for yp < —1/2.

Given the previous results, to prove Theorem 5.2.1 it is sufficient to consider the
m.l. equations with (X,_[x,4,n — Xn—k,,n) replaced by Qn(t) — Qn(1), t € [0,1].
It is convenient to reparametrize the equations in terms of (y,5) = (v, 0/a(k,/n)).
Then we have the equations

1) Qn(t)—Qn(1)
J {?log (1+395E5) - (
Q’n(t);Qn(l)

! a(ee) -
Jo (% + 1) TTeesmmdt = 1.

a(kn)

1Qn(t)—QRn()

Ed

©__aCa) -
(5.3.4)

2

actn)

Q2

Lemma 5.3.2. Assume conditions (5.2.1) and (5.2.3). Let (v,6) = (Vn,0n) be
such that

17/& = 0| = Op(k*/?). (5.3.5)

Then, if =1/2 < v <0 or v >0

P (1 + 1M >Ct ™, te [ijl]) -1, n — 0o, (5.3.6)
6 a(k) 2k

for some r.v. C >0, and if v0 =0,
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Moreover, if vg =0,

Qn(t

Q) _ 0 (1)iogkn, 1 oo, (5.3.8)

?r

)

(%)

where the Op-term is uniform for t € [0,1].

Proof. We shall prove the lemma for F~ (1 — U, q41,n), where U; n, 1 < i <n, are
the i-th uniform order statistics. Then it follows that the statements in the lemma
are also valid for X,,_[4, 4., and consequently for Q@ (t).

Note that by Shorack and Wellner (1986 - Chapter 10, Section 3, p. 416, in-
equality 2) the process

n
{sUikairnn | (539)
n 1/(2ka) <t<1

is stochastically bounded away from zero and infinity, as n — oo. Also note that
(5.2.1) implies (Drees, 1998a - Lemma 2.1), for some functions a(s) ~ a(s) and
®(s) ~ ®(s), s 0, for all zg > 0 and £ > 0,

F~(l—sz)-F~(1-s) g=70_1

lim sup z"*¢ LIONS *  _¥(z) =0.
510 o<z <zo d(s)

Combining the two we get, as n = 00, kn, — 00, kn/n — 0,

F™(1-Uppaprn) - FT(1-5) (B Unnr+1n) 01
a(te) Yo

o(ka) (5.3.10)

n
-v (k_U[k"t]+1,n) ‘ = Op(l)'

sup tYote
te[1/(2kn),1]

Then we have, for —1/2 < vy < 0 or 79 > 0,

Xn—[knt],n - Xn—kn,n _ Fe (1 - U[knt]+1,n) - F< (1 - Uk"—i-l,n)

a(ke) - a(ke)

1 (n 1 Lk, n
= . k_U[k 41, n) b (EUkn+l,n> + q’(;)q’ (EU[knt]—H,n)
k

kn

8520 (i) +on1v e D)
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Hence

1 n —70
- 0)% (EUkn+l,n>

= kn n
‘I’(?)‘I’ (EU[knt]+l,n)

)

Il
—N—
—
|
/N
&=
=

3

+

l—‘

3
N——
2

——
|
QiR

v 1 n —"0
+§_ (EU[knt]+1,n)

q:w

Yz kn n —(vo+e).—1/2

7% i n 1v ¢

= (n) (anknJrl, >+0p(( Vi Ve %)
= I+II+III+1IV+V+VI

By (5.3.9) the product ¢ IIT is bounded away from zero. The other terms are
of lower order:

By the asymptotic normality of intermediate order statistics, part I is Op(kn el 2).
Hence t°I = op,(1); this is trivial if v > 0 and for —1/2 < 7 < 0 note that
t'mkﬁl/2 < 2_7°k;7°71/2 — 0, k, — oo. By assumption and (5.3.9) part IT is
Op(kﬁl/Q). For IV and V note that

W () = o(t/?), t]o0.

This combined with (5.2.3) and (5.3.9) gives that IV and V are o,(t~7°). Part VI
is now also obviously o0,(¢~7°), provided ¢ is small enough.

Now consider the case o = 0. Since (5.3.10) is still valid when g = 0, with the
obvious changes, we get

an[knt],n - Xn—kn N

a(%)
n n ~ kn n
= —log (EU[knt]Jrl,n) + log (EUk"H’") + ‘P(;)‘I’ (EU[knt]-H,n)
~ kn n —e\ & kn
(T (Vi) ot IB(E) (.311)
hence,
an n - Xn— n T
147 [knt]: h En,
o a("®)
= 1——10gt——10g U{k 41 + 210 Uk +1,m
k‘n n n 6_ n I
")/~ k n n Y-
gq’(?)‘l’ (EU[knt]H,n) - : (k—Uk +1 n) +0p(gt knl/z)-

Hence by assumptions (5.2.3) and (5.3.5), (5.3.9) and since t > 1/(2k,), all the
terms but the 1 in the last equality are negligible.



5.3 Proofs 97

Finally, to verify (5.3.8) just note that (5.3.11) when ¢ = 1/(2ky) is Op(logks,),
provided 0 < & < 1/2. Hence given the monotonicity of X, _(r..].n = Xn—k,,n the
result follows. O

Proposition 5.3.1. Assume conditions (5.2.1) and (5.2.3). Any solution (y,&) of
(5.3.4) for which (5.3.5) holds and for which log ¢ is bounded satisfies, as n — oo,

k> (y = 70) = QE2 [ (190 — (29 + 1)620) Yoo (8)dt = 0, (1)

5.3.12
Er/? (6 —1) — 'ro+1 fo (o + 1)(290 + 1)270 — £70)Y,, (£)dt = 0, (1), ( )

where for vo9 = 0 these equations should be interpreted as its limit for v9 — 0, i.e.
fOT Yo = 0)

bl %y + [ (2 + log )Y (1)t = (1)

5.3.13
kn/2(5 = 1) = [i (3 + logt) Y (t)dt = 0,(1). ( )
Remark 5.3.2. For vy # 0 the condition on logé is not needed.
Proof. We consider the cases v > 0, —1/2 < v < 0 and 7o = 0 separately.
Case o > 0. In this case system (5.3.4) can be simplified to
fol log (1 + % Qn(0)Qn(l) (f)( "Q)"(l)) dt =
(5.3.14)

1 1
fo 142 9a0—2n () dt = vy
a(kn)

Next we will find expansions for the left-hand side of both equations.
Rewrite the first one as

(2kn) _ 1
/ log {1+ —Q"(t? @n)) g 4 / logt 0 dt
0 ‘7 a() (2kn)~1

! Yo lQn(t) —Qn(1)
+/(2kn)_llog{t <1+& a(En) )}dt

1
=1 1——) )+ L.
1+ 7( 2 kn) + Iy
First we prove that I is negligible. Since t — @Q,(t) is constant when ¢ €
[0, (2k,,)~!], from Lemma 5.3.2 we have

Qn(1) 'YQ"(L) - Qn(1)

VQn() 2kn
YET A a(E)

=1+ > (2k,)"°C, (5.3.15)

q:|



98 On maximum likelihood estimation of the extreme value index

for all t € [0, (2k,,)~!]. On the other hand from (5.3.1), (5.3.3) and (5.3.5),

1+2Qn(2; ) Qn( )

= k1t 0,(1).

Hence it follows that I = op(k_l/ %).
Next we turn to the main term I. We will use the inequality 0 < z—log(1+z) <
22/(2(1 A (1 + z)), valid for all z > —1, with

thWO( L2 @alt) - Qn(l)) L

a(ke)

Then, from Lemma 5.3.2 it follows that 0 < 1/(1A (1 +z)) <1V 1/C < oo with
probability tending to one. Moreover note that relation (5.3.3) implies

(2kn) " (2kn)~"
| om0 </ tlmdt) = 0,((2ha) /7+) = 0,(1),
0 0
for € € (0,1/2). Hence from (5.3.1), as n — oo,

1 1 — ¢
L = / ((1—%) ! +3k;1/2t”°Yn(t)> a
( g

g Yo

1 1 — ¢ 2
+0, </ ((3 —Y0)——— "Ll k 1240y, (t )) dt
(2kn)"1 \ O Yo

= {(g - 7")W + Op(k;1/2(2kn)—1)}

1
lk,;lﬂ/ POV, (8)dt + op (k- 1/2)}

+
—

o 0
+0, (k7 + kN (2kn) % + kL (2k,) 71/2H)
g 1 Y —1/2 /1 1/2
= (= — —k, 7Y, (t)dt k,
(6' 70)(70_’_1) o ( ) +OP( )7

where for the last equality we took € < 1/4. Hence we proved

/010g<1+&—a(k:) )dt
- T_ # Vo1 [ 1/2
= ’70+(a 70)(70+1) =k, /Ot Y, (t)dt + op(k, /7).

This means that the first equation of (5.3.14) implies

1
Yo +1)

1
7=70+(l - %) +lk;1/2/ Y, (t)dt + 0, (k7H?).
& ( & 0
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Now we deal with the left-hand side of the second equation in (5.3.14). Using
the equality

valid for x > —1, with

¢ aly)
we get, uniformly for 1/(2k,) <t <1
1 -t Y1
= LA ot -1/2
1+7Qn(t) ey ! { ( 7) o t &kn Y. (t)
a(te)
2
1/2
( %— t‘m +t70’¥k / (t))
1+1M }

a(te)
Hence the left-hand side of the second equation in (5.3.14) equals

(2kn)_1 1
| "
0 1 + o Qn (t)_Qn (1)

7 A
! Yo b 0 — 27 Y —1/24270

t.

2
N (R Ot LR A0)
+/( PR ACEAD d

2kn)7 a(%e)

From (5.3.15) it follows easily that the first integral is o, (kn 1 %). For the second
integral, direct calculations and (5.3.3) yield

1 ¥ 1

s R Tz

v 1
—Tk;m/ 2707, (t)dt
) & 0

+0p((2kn) 707" 4 kM2 (2kn) 70T 4 kP (2K,) 70T/

and, provided ¢ < 1/2 the Op-term is op(k;1/2). For the last integral of (5.3.16),
by Lemma 5.3.2 it is bounded by

! 1— ¢ 2
0, (/ ¢10 ((1 - %) + lk;l/%%Yn(t)) dt
(2kn)—1 o Yo o

= Opky" + k(1 (26n) 70F2) 4 k! (2k) 770 71/249) = 0y (k7 72),
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if e < 1/4+ v9/2. Therefore we proved

1
! dt
/0 14 19:0-0.0)
a(%)

= T [y, 0t 40,8, 17).
Y+l ' (o+1D2w+1) " Jo !

Hence, under the given conditions system (5.3.14) implies

o+ (2 —70) kg + Lha P [} 00, (0)dt + 0, (kn'7) =
— 2k L0V (0)dt + oy (k) = A
(5.3.17)

Next we prove that (5.3.17) implies (5.3.12). First note that by (5.3.3) and (5.3.5)
we have that (5.3.17) implies

Yo + (£ = 70) =it + Y0k 2 [ 00V (t)dt + 0p(kn /%) =
Yok /2 [y 20V, (8)dt + 0p (k) = L1
(5.3.18)

1 (x 1
o1 ~ (7 = 0) Gornmem

1
sort — (3 =70 GornmerD —

Then note that from the first equation and (5.3.5) we have |y — 70| = Op(k,fl/z),
hence |y — 0|2 = 0, (kn /). Therefore 1/(70 +1)— 1/(y +1) = (v = 0)/(70 + 1)°
+ o(k,fl/Q) and so (5.3.18) implies

Y= = (2 =70) sk = kn 0 fy 00Yn(t)dt + 0p(kn?) =0
— kn 1/270f £200Y,, (£)dt + 0p(kn /?) = 0.

- 1
v ~ (3 70 GornEeD
Then, solving this system in v — o and (2 — 7o) one easily gets (5.3.12).
Case —1/2 < v < 0. Again, in this case system (5.3.4) simplifies to (5.3.14).
Rewrite the left-hand side of the first equation as

/sn log <1+3Qn(~) _nQn( )dt+/ logt™"° dt

N 1og{t70 in Q)n( ))}dt

= J1+ {70 +0 (snl log snD} + Ja

and choose s, = k¢, with 6 € (1/2, (4¢)~!) for some ¢ € (0,1/2).

Now we prove that J; is negligible. Note that since ¢t — @, (¢) is constant when
t €10, (2k,) 1], (5.3.6) is trivially extended to ¢ € [0,1] when o < 0. By definition
Qn(t) —Qn(1) >0, for all t € [0,1] and a(kn/n) > 0. Hence from Lemma 5.3.2 with

7 <0,
P(log<1+l—Q"Q( )"(1)) < |log(Ct=0)|, t€[0,1]>—>1
g aly
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as n — 00, and so [ |log(Ct=°)|dt = op(k;l/z)7 which gives J; = op(k;1/2).

Next we see that the main contribution comes from J>. From (5.3.1), Lemma
5.3.2, and since 0 < z —log(1 + z) < 2?/[2(1 A (1 + =))], valid for all z > —1, and
taking @ = £°[1 + (7/5)(@n(t) — Qu(1))/a(kn/n)], we have

1

1—=¢o

Joy = / ((1 — ) t + 1k;1/2t70Yn(t)> dt
Sn g Yo g

1 1— ¢ 2
+0, ( [ @ -t s Loy, o) a

Yo

n

- T_ 1 —1/2 gyo+1 Jp-1/2 /1 Yy
= {2 o+ {2 [ ovoar

+O,,(k;1/2/ ntl/zsdt)}

0

1 — {70 2
w0, ([ [@-wi5 s Do) o)
sn L O o

Yo

and from the choice of s, it follows that the Op-terms are op(kn 1 ?). Hence we

proved that

! 7Qn(t) — Qn(l)

1
i 71/2/ "0 —1/2
+ =k, t7°Y, (t)dt + op(k, .
(v+1) & 0 (® vl )

~
= Y +(z—7)

G

Now we turn to the second equation in (5.3.14). Using the same decomposition

as in the v > 0 case, that is (5.3.16), we get say, K; + K + K3, and take this time

sp, = k% for some § € ((270+2)7%, (=670 —2) "L A (de —270) LA (—4yo — 1+2¢)7 1)

and € € (0,7 + 1/2). From Lemma 5.3.2, K1 = O,(s)°*!) = op(kﬁl/z). Moreover

1 v 1 Y —1/2 /1 2

K, — 2 — k12 [ Y, (dt
T A R S e R S

+0p(871,0+1 +k;1/283ﬂ°+1 +k;1/2s;rto+1/2*5)

and given s, we have that the Op-term is o, (kn 1 ?). Finally from Lemma 5.3.2 and
the definition of s,,,

1
0, ( [

= 0y (k7 (2 V (—log ) + k7 (5007 4 1) + k7 (a20F1/27 1)
Op(kglﬂ)-

2
gl L=t 7,102

- — — + <k 1Y, (t)| dt
@ -0 25 4 v

K3
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Hence the conclusion is the same as in the y¢ > 0 case.

Case o = 0. In this case we use equations (5.3.4). Using (twice) the equality
1/(1+z) =1—x+ 2?/(1 + ), the inequality |z — log(l + z) — 22/2 + z3/3| <
z* /[4(1A(1+4x))], valid for all z > —1, both with 2 = (v/5)(Qn(t)—Qn(1))/a(kn/n),
and (5.3.7) in Lemma 5.3.2, we have for the left-hand side of the first equation

7 @Qn()-Qn(1)

1 ! v Qn(t) — Qn(l) G d(kT")

7, log (HE—a(#) )—(1 +v)1+%Qn(;)(£)n(l)dt
_ [ 1Qa() — @Qu(1) L1 1 (Qu®) - Q)
- | ey i | <5+”)?< a(%) ) “

+o,,(/0F

From (5.3.1) the first 1ntegra.1 in the right-hand side of the last equation equals
—5 L =gt fo t)dt + o0, (kn */?). For the second integral in the right-hand
side of (5.3.19) con51der

(o) (1 () e [ () )

with s, = k7%, 6 € (1/2,(4¢)7!), € € (0,1/2). Then the first of these last two

integrals is op(kn_l/2) from (5.3.8). Using (5.3.1) and (5.3.3), the second integral
equals

—_
2
M
| —
O
3
—~~
~
~
|
O
3
—~~
—
~—

Qnlt) — @n(1) Q"(l)] 5 dt) . (5.3.19)

LB L [ gt + 0y 1),
Recall that |v/6| = O, (kn*'?).

Using a similar reasoning, but with § € (1/2,3(4e)"1A4(1+6¢)71), e € (0,1/2),
the third integral of (5.3.19) equals —4v63 + o,(kn 1 %). Finally the Op-term of
(5.3.19) is clearly o, (ks /?) from (5.3.8).

Hence we have that (5.3.19) equals

- _~___ 1/2/Y dt——k 1/2/0(10gt) () dt + o0, (k2.

To deal with the left-hand side of the second equation, use again the aforemen-
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tioned equality for 1/(1 + z) and (5.3.7) in Lemma 5.3.2 to get

Ly [ M7 Qu® = Qu) ., [ (7 Qu®) — Qe
T{/o 5 Atk dt‘/o<5 ey )‘”

+0, ( [

F o a(i)
_/1’7 (% Qn(tg)l(;_"?n(l)> dt+0p (knl(logkn)3)] ,

where for the Op-term we used (5.3.8), and then it follows that this Op-term is

(v/5)op(kn Y %). Next we consider the second and third integrals in the last equality,
L, and L, say. As for L it follows from (5.3.8) that

Ly = Oy (sav(log kn)?) = 0p(k; /%)
if s, = k%, 6 € (0,1). As for Lo, from (5.3.3) with € € (0,1/2), we get

L, = —2% + 0, (k;l/"’sn(log sn)? + ki 3/257% 4 k;l)

Y _
_2§ + Op(kn 1/2)'

Hence we proved that

¥ @u(H)=Qn(1)

(L i)
s 3T T reeeq

a(ke)

1
= BB [ e+ o),
o 0

o &2

Therefore under the given conditions, a solution of the m.l. equations must
satisfy

—1/2

(1-6)+2y— % — &ilc;;/?l 3 Ya(t)dt — kn*/? [ log 1Y, (t)dt + o, (kn /) = 0
(1=6)+7 =2 4k [ Va(t)dt + 0p(kn/*) = 0.

Next note that the first equation implies & = 1 + Op(kn Y 2), and so v/d = v +

op(kn 1 %). Simplifying the above equations, the result follows.
[l
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Proof of Theorem 5.2.1. From Proposition 5.3.1, under the conditions (5.2.1), (5.2.3),
(5.3.5) and log bounded, one easily obtains the solutions (5.2.4)-(5.2.7). That is,
starting from (5.3.12)-(5.3.13), use the expansion given in Lemma 5.3.1 for Y, (¥).
Note that the integral involving the o,(1)-term in (5.3.2) vanishes, in probability,
provided € is taken small enough.

On the other hand one can easily check that given the solutions (5.3.12)-(5.3.13),
one can go back through all the proof of Proposition 5.3.1, now without assuming

condition (5.3.5) and that logé is bounded. This shows that (5.2.4)-(5.2.7) are the
only local possible solutions of the m.l. equations verifying |§, — vo| = Op(kn 1 %)

and |6 /a(kn/n) — 1| = Op(kn /?), n = . O

Proof of Corollary 5.2.1. Since kimé(kn/n) — A, the bias of ki/2('3/n — 7o) equals
(70 + 1)2/70) fy (7° — (270 + 1)£270) ¥ (t)dt. Using (5.2.2) and by simple calcu-
lations the result follows. Similarly for the other entries of p.

To obtain the variance of ky/ B — %0), let X(@) = (v + 1)%/7
(t7° — (270 + 1)t270) (W(1) — t~(0+DW(t)) and Rx(s,t) = E[X(s)X(t)]. Then,
var(kn'?(An — ~0)) =var (fol X(t)dt) = fol fol Rx (s,t)dsdt. By simple calculations
the result follows. To obtain the covariance of &,/ * (3 — 7o) With kn/? (6nfa(kn/n)—
1), let Y(t) = (vo + D)o (70 + 1)(270 + 1)#270 — ¢70) (W (1) — ¢t~ (0 +DW(¢)) and
Rxy(s,t) = E[X(s)Y(t). Then, cov(kn' (3n — 0),ki'*(6n/a(kn/n) — 1))
= fol fol Rx y(s,t)dsdt. The other entries of ¥ follow similarly. O

Proof of Theorem 5.2.2. Integration of the various terms of (5.3.2) yields for v =0

1/2 ! Qn(t) _Qn(l) !
k,, (/0 o) dt+/0 10gtdt>

= /1 (Wa(1) —t7' W, (t)) dt + ki/%(k—") /1 T (t)dt + o0p(1),
0 n - Jo
hence
1/2 mf) 2 Ky [ ' -1
KL/ (a(%) _1> — kY Q(;)/O T (t)dt —>d/0 (W) —t'W(t))dt

with W a Brownian motion. Similarly we obtain

(2)
k(e —2) 40

a(%z) n
4 — /1 2(logt) (W(L) —t 'W(t)) dt.

Application of Cramér’s delta method then gives

k

n
n

) /0 2(log £) T (£)dt

kY24, + EL2®(2R) / 1(2+logt)‘1’(t)dt —a - / 1(2+logt) (W) ='W (1)) dt.
0 0
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Hence by (5.2.6)
ky/? (1« = Ampe) = 0.
The proof of the second statement is similar. O

Proof of Remark 5.2.4. Under the stated conditions the following analogue of (5.3.2)
holds:

1/2 IOan(t)_IOan(l)
k, ( &(%")/F“(l—%”) +logt>

2
= Wp(1) =t 'Wp(t) - k}b/zq,*(%n)log t +op(1)t*1/2’g,
provided
k a(ks) y
() ~ e = Ok, 1), 5.3.20
&) Fe(1- k) (k™) ( )

see Draisma et al. (1999), Appendix. Following the same reasoning as in the proof
of Theorem 5.2.2, we then get the result. O






Chapter 6

Tail dependence in
independence

Co-authors: Gerrit Draisma, Holger Drees and Laurens de Haan
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Abstract. We propose a new estimator of the parameter 7, introduced by Ledford
and Tawn (1996), governing dependence in bivariate distributions with asymptotically
independent componentwise maxima. We prove asymptotic normality of this estimator and
two other estimators proposed in the quoted paper. For the latter we develop a weighted
approximation result for a two-dimensional rank-process. We compare the estimators and a
related test for asymptotic independence in a simulation study. Also we show consistency
of the resulting estimator for failure probabilities in this set-up. Our estimator for 7 is
inspired by the work of Peng (1999). Our less strict second order conditions are satisfied
by the normal distribution.

6.1 Introduction

Suppose a region is protected by a river dam against flooding. The water level
is regularly observed at two stations, yielding a sample (X;,Y;),1 < i < n. If there
is no other protection within the region, the whole area will be flooded if the water
level exceeds the height of the dam at one of both points. Hence the probability of
a flooding at a particular date is of the form

P{X;>uorY; >uv} (6.1.1)
We assume that (if necessary, after a suitable declustering) the vectors (X;,Y;)

are independent and identically distributed with distribution function F, say. If

107



108 Tail dependence in independence

the heights u and v of the dam are large, then multivariate extreme value theory
provides a framework which allows a systematic estimation of the probability (6.1.1).
For this, assume that there exist normalising constants a,,c, > 0 and b,,d, € R
such that

nox. - noy_
hm Fn(a/nx + bn; CnyY + dn) = hm P{ V’L:l ¢ bn S Z, Vz:l )/; dn S y}
n— 00 n— oo Qp, Cn
= G(z,y) (6.1.2)

for all but denumerable many vectors (z,y). Here \/}_, X; denotes the maximum of
n consecutive water levels at the first station and G is a distribution function with
non-degenerate marginals (cf. Resnick, 1987; Chapter 5). Taking logarithms, one
concludes from (6.1.2) that

X-b Y —d
lim nP{ ~ >z or Z > y} = —log G(z,y) (6.1.3)
n—oo an Cn
for a random vector (X,Y’) with distribution function F'.

For the sake of simplicity, in this introduction we concentrate on the case when
both marginals are uniformly distributed; this can be achieved by transforming the

random variables X and Y with their pertaining marginal distribution functions F;
(cf. (6.3.1)). Then (6.1.3) simplifies to

llm nP{l-X<z/norl-Y <y/n}=—-logG(—z,—y). (6.1.4)
n—0oo
and, in fact, even

lim sT'P{1-X <szorl—Y < sy} =—logG(—z,—y) (6.1.5)
s>

with s running through R. Dividing the analogous equation where s is replaced with
st by (6.1.5), one sees that

Pll-X<tzorl-Y<ty}mtP{l1-X<zorl-Y <y} (6.1.6)

for small z and y, i.e., the function t » P{1 — X <tz or 1 — Y < ty} is regularly
varying at 0 with index 1.

Recall that we want to estimate the probability (6.1.1) with » and v so close to 1
that no or only very few observations lie in the failure region {(r,s) € [0,1]?|1—7r <
1-worl—s<1—w}. Now choose a sufficiently small ¢ such that the set

{(r,s) €[0,1|1=r < (1—u)/tor 1 —s < (1—v)/t} (6.1.7)

does contain a considerable number of observations and hence the probability that
(X,Y) lies in (6.1.7) can be estimated using the empirical distribution. Then we
can use (6.1.6) with z = (1 — )/t and y = (1 — v)/t to estimate the probability
(6.1.1) we are actually interested in.
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However, in many situations one may also be interested in the probability that
both thresholds are exceeded, i.e., P{X > u andY > v}. This probability is of
interest, e.g., if the levels of two different air pollutants, the losses suffered in two
different investments or different variables relevant for the probability of a flooding
(cf. Section 6.5) are observed. Convergence (6.1.3) implies

X — n Y - n
lim nP{ b >z and d >y}:—logG(a:,y)+10gG1(x)+logG2(y),

n—o0 a, Cn
(6.1.8)

since the marginal distributions converge to the marginals G; and G5 of the limit
distribution. Note that if the marginals of the limit distributions are independent,
that is, G(x,y) = G1(x)G2(y), the limit in (6.1.8) is identically zero. In that case we
say that the maxima of the X; and those of the Y; are asymptotically independent.
This is a rather common situation; for instance, it holds for nondegenerate bivariate
normal distributions.

Unfortunately, in this case the reasoning used above to derive estimators for the
probability (6.1.1) does not lead to anything one can employ for the estimation of
the probability of a joint exceedance, since the analog to (6.1.6) does not hold.

In order to overcome this problem, Ledford and Tawn (1996,1997,1998) (see also
Coles et al., 1999) introduced a quite general submodel, where the tail dependence is
characterized by a coefficient 1 € (0,1]. More precisely, in the setting with uniform
marginals, they assumed that the function ¢t — P{1 — X < tand1-Y < t}is
regularly varying at 0 with index 1/7. Then n = 1 in case of asymptotic dependence,
whereas n < 1 implies asymptotic independence. When 7 is less than 1, the value
of n determines the amount of dependence in asymptotic independence (see (6.2.1)
below and the comments thereafter). Thus the submodel can also be used to device
a test for asymptotic independence in the basic relation (6.1.2).

Moreover Ledford and Tawn proposed an estimator for 7. Peng (1999) presented
a theoretical background for their model and proposed a non-parametric estimator
for n. Peng proved asymptotic normality of his estimator under second order con-
ditions. The present paper contains the following contributions:

(1) Peng’s conditions are generalised so that, e.g., the normal distribution is in-
cluded.

(2) Asymptotic normality of two modified versions of estimators introduced by
Ledford and Tawn is shown under second order conditions (Section 6.2).

(3) A new estimator is introduced and its asymptotic normality is derived (Section
6.2).

(4) A procedure is set up to estimate the probability of a failure set that works
under asymptotic dependence as well as under asymptotic independence. The
estimator is proved to be consistent in our model (Section 6.3).
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(5) A simulation study compares the behavior of the estimators and their use in
testing for asymptotic independence. Also the behavior of the estimator for
failure probabilities is studied in a simple situation (Section 6.4).

In Section 6.5 we examine the dependence between still water level, wave heights
and wave periods at a particular point of the Dutch coastal protection. Sections 6.6
and 6.7 contain the proofs of the results of Section 6.2 and Section 6.3 respectively.
An Appendix provides some helpful analytical results.

6.2 Estimating asymptotic dependence or independence

Let (X,Y) be a random vector whose distribution function F has continuous
marginal distribution functions F; and F5. Our basic assumption is that

lim (P{l —R(X)<trand 1 -K(Y) <ty}
t0 q(t)
exists, for z,y > 0 (but z +y > 0), with ¢ positive, ¢¢ — 0 as t — 0 and ¢;

non-constant and not a multiple of ¢. Moreover we assume that the convergence is
uniform on

e(@,y)) [a(t) = er(@,y) (6:21)

{(z,y) € [0,00)* | 2* +y* = 1}.

Tt follows that the function q is regularly varying at zero of order 1/n, 5 € (0,1]; ¢1
is also regularly varying at zero, but with order 7 > 0. Without loss of generality
we may take ¢(1,1) = 1, and we may assume that ¢(t) = P{1 — F;(X) <tand 1 —
F,(Y) < t} (see Appendix). We also assume that { := limy g q(t)/t, exists. Since
Fi(X) and F»(Y) are uniformly distributed, obviously limsup¢(t)/t < 1,and [ =0
when 1 < 1. Our assumptions imply that (6.2.1) holds locally uniformly on (0, 00)?
(see Appendix). The bivariate normal distribution satisfies these conditions: see the
example at the end of this section.

The function ¢ is homogeneous of order 1/n, i.e., c(tx,ty) = t'/"¢(x,y). The
measure v defined by v([0,z] x [0,y]) = ¢(z,y) inherits this homogeneity:

v(tA) =t/ (A) (6.2.2)

for t > 0 and all bounded Borel sets A C [0, c0)2.

The parameter 7 is Ledford’s and Tawn’s coefficient of asymptotic dependence,
cf. Ledford and Tawn (1996,1997). Now [ > 0 implies asymptotic dependence, and
I = 0 implies asymptotic independence. Hence 1 < 1 implies asymptotic indepen-
dence. Condition (6.2.1) is somewhat similar to condition (2.8) in Ledford and Tawn
(1998).

Now we turn to estimators for 7, given an ii.d. sample
{(X1,Y1),(X2,Y2),...(Xn,Yn)}. We start with an informal introduction to the
estimators of Ledford and Tawn (1996). They proposed first to standardize the
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marginals to the unit Fréchet distribution, using either the empirical marginal dis-
tributions (that is, using the ranks of the components) or extreme value estimators
for the marginal tails, and then to estimate 7 as the shape parameter of the minimum
of the components, e.g. by the maximum likelihood estimator or the Hill estimator.
However, since these estimators have larger bias for Fréchet distributions than for
Pareto distributions, we prefer to standardize to the unit Pareto distribution using
the ranks of the components.
For this consider the random vector

1 1
—AX) 1-BE)

T:.=

which is in the domain of attraction of the extreme value distribution with parameter
1/7. Since the marginal d.f.’s F; are unknown, we replace them with their empirical
counterparts. This leads to (with a small modification to prevent division by 0):

T(n)__ n+1 n—+1
t " pn4+1-RX n+1-R)’

1=1,...,n,

with R;X denoting the rank of X; among (Xi, Xs,...,X,) and R} that of ¥;. Now
1 can be estimated by the maximum likelihood estimator in a generalised Pareto
model, based on the largest m = m(n) order statistics of the Tz-("). This estimator
will be denoted by 7;. Alternatively the Hill estimator can be used:

. 1 «— Tr(:rz—i-i-l
N2 1= R Z IOg I‘V(T

i=1 n,n—m

Note that one important advantage of the maximum likelihood estimator over the
Hill estimator in the classical i.i.d. setting, namely its location invariance, is not
relevant here: there is no shift after standardizing the marginals to unit Pareto (see
Lemma 6.6.3). Since 72 has smaller variance, one might expect 72 to outperform 7j;
(however, see Section 6.4).

Next we introduce Peng’s estimator and our new proposal. Equation (6.2.1)
implies for k/n — 0 and s > 0

P{l1-F(X)<sk/nand1-FK(Y)<sk/n} 4,
P{1-F(X)<k/nand 1 - Fp(Y) < k/n} _ ~ /M(1+0(1)) (6.2.3)

locally uniformly. Denote by X, ; and Y,,; the ith order statistics of the X; and Y},
j=1,...,n, respectively. To estimate 7 from the sample we may replace in (6.2.3)
P,1— F; and 1 — F; by their empirical counterparts. Write

Sn(G, k) =D 1{Xi > Xpn_j and Vi > Yy, n_y}. (6.2.4)

i=1

Note that S, (j,k) ¥ n P{1— F(X)<j/nand 1 — F(Y) < k/n}.
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Using s = 2 in (6.2.3) leads to Peng’s (1999) estimator:

Sn(2k, 2k) )

fis = log2/log (W

We propose the following estimator, based on integrating (6.2.3) with respect to
s from 0 to 1:

o K1 Sn(ihd)
M kSule k) = Ty S ) (6:23)

with S, as in equation (6.2.4).

Note that 7j; and 72 are based on the empirical quantile function, and 73 and 74
on the empirical distribution function.

We first have to prove the consistency of the new estimator.

Theorem 6.2.1 (Consistency). Suppose for z,y >0

. Pr{l1-F(X) <tz and1 - F(Y) <ty}
}g% @ =c(z,y) (6.2.6)

where q and ¢ are positive functions. Let k = k(n), r(n) := n q(k/n) — oo (this
implies k — 00) and k/n — 0 for n — oo. Then

s = 1)
in probability, with n the reciprocal of the index of regular variation of q at 0.

Remark 6.2.1. Note (6.2.1) is not needed here. Moreover 7j; and 7j» are consistent
too if m = [r(n)].

The next theorem states the asymptotic normality of all estimators considered.

Theorem 6.2.2 (Asymptotic normality). Assume (6.2.1). Additionally assume
that ¢ has first order partial derivatives c; = a%c(w,y) and ¢, = a%c(ac,y). Suppose
k=k(n), r(n) =n q(k/n) = oo (this implies k — ), k/n — 0, \/r(n)q (k/n) =
0 as n — oo, and m = m(n) = [r(n)].

Under these conditions the \/r(n) (ﬁ, — n) are asymptotically normal with mean
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0 and variance o?, i = 1,2,3,4. The variances are

o1 = (1+n)*(1 = 1)1 = 2cy(1,1)¢y(1,1)) (6.2.7)

o3 =n*(1 = 1)(1 = 2l (1,1)¢,(1,1))

o2 =2n* (log2) 2 (1 — 271/ [% (1 —=30)(1 — 2leg(1,1)ey(1,1)) (6.2.9)
+16(1,2) e (1,1) (1 = ley(1,1)) + 1e(2, 1) ey (1, 1)(1 — lea(1, 1))]

o2 = % [(1 — 30)(1 = 2ley (1, 1)ey (1, 1)) (6.2.10)

+ 4lcy (1,1)(1 — ley(1,1)) /1 c(u, 1)du
0

+4lcy(1,1)(1—lc$(1,l))/01 c(1,u)du].

Remark 6.2.2. The assertion for 73 is a generalisation of Peng’s, since our condi-
tions are weaker.

Remark 6.2.3. Note that instead of (6.2.1) the weaker condition lim;_,q P{1 —
Fi(X) <tzrand 1—F(Y) < ty}/q(t) — c(z,y) = O(q1(t)) is sufficient for Theorem
6.2.2. However, under (6.2.1) similar results can be easily deduced if the intermediate
sequence k is such that \/r(n)q; (k/n) — ¢ > 0. In that case, usually a non-negligible
bias occurs if ¢ > 0 (and the present results correspond to the simpler case ¢ = 0).

Theorem 6.2.2 may be stated without the unknown sequence r(n) entering ex-
plicitly the formulation, as in the following corollary.

Corollary 6.2.1. Assume the conditions of Theorem 6.2.2. For i = 3,4

V Sn(k7 k)(ﬁz - 77)
has the limiting distribution of Theorem 6.2.2, with S,(j, k) as in equation (6.2.4).

Remark 6.2.4. When using 7j; or 7j2, the choice of the number m = [r(n)] of largest
order statistics from TT(:? is up to the statistician, so there is no need to estimate

r(n).

Corollary 6.2.1, together with consistent estimators for the unknown quantities
in the asymptotic variances in Theorem 6.2.2, can be used to construct a confidence
interval for 1 or to test the hypothesis n = 1. The following theorem provides these
estimators.
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Theorem 6.2.3. (i) Define

Sn([k(1+k—1/4)] k) = Sp(k, k)

6 (1,1) = k't )
Sn(k, k)
1/4
1) = SO ) = 5, )
Sn(k, k)
d‘l = Z‘l;:zl STL(J’ k’)
k Sn(k,k) ~°
dy = Z] 1 5n(k, 4)
k Sn(k, k)
Z — Sn(kak)
k
with Sy (i,7) as in equation (6.2.4). If the conditions of Theorem 6.2.2 hold
then
f—>p L
If, in addition, n > 1/2 then
é2(1,1) =p c(1,1), ¢y(1,1) =p ¢y(1,1),
1 1
dy —>p/ c(u, 1)du, dy —>p/ c¢(1,u)du.
0 0

Moreover, let
&7 = (1+9)*(1 = D)(1 = 20e4(1,1)¢,(1,1))

and define 67, i = 2,3,4, likewise by (2.8)-(2.10) with n,1,c,(1,1),¢,(1,1),
2

f c(u, 1) du and fo ¢(1,u) du replaced by thezr respective estimator. Then 67,
=1,...,4, are conszstent estimators of a2 for alln € (0,1].

(i) The analogous assertion to (i) holds for the estimators

o= 1l
n b
7.5/4 .
&(1,1) = kT(TT(:‘,;f Y _m)

with m := m(n) := [r(n)], k :== m/i, and T,(lf;’"),i = 1,...,n, the order
statistics of

T nt1 ntl ) i=1,...

p— 71 -
mm(n-{—l—RZX( +u)’n+1—R}’ ’

and ¢y (1,1) defined analogously to ¢,(1,1).
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Remark 6.2.5. Note that é,(1,1) may also be estimated as 1/9—¢;(1, 1), provided
n>1/2.

Example 6.2.1. The bivariate normal distribution with mean 0, variance 1 and
correlation coefficient p ¢ {1, —1}, satisfies (6.2.1) with

n=(1+p)/2,  czy) = (xy) /O,

q(t) = ka(p)t*/ ) (= log )~/ +0) {1 — k() 2Bl 18 0) } ,

2logt

(2,9) = —ks(p) = ka(@0,p),  @r(®) = 5

c1\X,Y) = 3P 4\Z,Y,p), q1 _210gt’

where

=P, /
k — 4 p/(l—‘,—p), k. = y
l(p) (l—p)2 ( 7T) 2(p) 1+p

log(4m) + 2 14+ p)(2 -
ks(p) = © gdm) +2 _(1+p)2=p)

1+p 1-p

ki(z,y,p) =logz +logy
N (p—1)(log z +logy) + p(log z)(log y) — p ((log z)* + (logy)?) /2
(1-p?) '

This can be checked using the tail expansion of the bivariate normal distribution
by Ruben(1964) as given in Ledford and Tawn (1997), combined with a sufficiently
precise expansion of the function f, the inverse function of 1/(1 — ®) where ® is the
standard univariate normal distribution function:

log(logt) = log(4m) —2

5 _ _ _
fA(t) = 2logt—log(logt) — log(4m) + 2logt 2logt
1 [log(logt)\> log(log )\ 2
+2< 2log +o0 ( log t ) , ast — o0.

6.3 Estimation of failure probabilities

Throughout this section we assume that the marginal distribution functions F;
of F' are continuous and belong to the domain of attraction of a univariate extreme
value distribution. Moreover, condition (6.2.6) and further conditions ensuring 7 —
n = Op((r(n))~'/?) shall hold (cf. Section 6.2).
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Recall from (6.1.6) that, if we want to estimate the probability of an extreme
set of the form {X >z or Y > y} and we assume that F' belongs to the domain of
attraction of a bivariate extreme value distribution, then we can use the approximate
equality

P{]. —Fl(X) <l1 —Fl(:c) orl —FQ(Y) <1 —Fz(y)}
R tP{l = Fi(X) < (1= Fi(@))/t or 1 = B(Y) < (L= Fa(y))/t} (6.3.1)

since for small ¢ the right hand side can be estimated using the empirical distribution
function de Haan and Sinha (1999). However, if the marginals are asymptotically
independent and the failure set is e.g. of the form {X > z and Y > y} then a
different approximate equality holds under condition (6.2.1) or (6.2.6):

P{]. — Fl(X) <1l- Fl(ll)) and 1 — FQ(Y) <1l- Fg(y)}
~tY/TP{1 — F(X) < (1— Fy(z))/t and 1 — F,(Y) < (1 — Fy(y))/t}. (6.3.2)

We develop an estimation procedure which works in this situation.

More generally, we aim at the estimation of the failure probability
pn = P{(X,Y) € C,} for failure regions C), C [z, 00] X [yn, 0] for some z,,y, € R
such that

(z,y) e C, = [z,00] X [y,00] C Chp. (6.3.3)

The latter property means that if an observation (z,y) causes a failure (e.g., a
flooding of a dike) then an event with both components larger will do so, too.
Asymptotically we let both x,, and y,, converge to the right endpoint of the pertain-
ing marginal distribution to ensure that p,, — 0, i.e., that indeed we are estimating
the probability of an extremal event.

The basic idea is to use a generalised version of the scaling property (6.3.2) to in-
flate the transformed failure set (1—Fy,1—F»)(C,) := {(1-Fi(z),1-F2(y)) | (z,y) €
Cp} such that it contains sufficiently many observations and hence the empirical
probability gives an accurate estimate. Since the marginal distribution functions F;
are unknown, their tails are estimated by suitable generalised Pareto distributions.

To work out this program, first recall from univariate extreme value theory
that there exist normalising constants a;(n/k) > 0 and b;(n/k) € R such that the
following generalised Pareto approximation is valid:

k z—bi(n/k)\"1/v _ k .
l_FZ(x)N n<1+’7l a,(n/k) ) - n(l_Fai,bi,'n(-'E)), t=1,2,

for z close to the right endpoint F; ' (1). Here a; and b; are abbreviations for a;(n/k)
and b;(n/k), respectively, and (1 + yz)~'/7 is defined as oo if v > 0 and z < —1/7,
and it is defined as 0 if ¥ < 0 and z > —1/v. Dekkers et al. (1989) proposed and
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analyzed the following estimators of the parameters a;, b; and ;. Define

k—1
1
M, (X) := EZ(logxn,n_j—1oan,n_k)T,r:1,2,
=0
) 1 My(x)2\ "
7= g (- GER)
NS ()
bl (E) = Xn,nfkj
R n X n—k 3M1(X)2—M2(X) . ~— S
a (E) 1= mn—kV/ with 47 =41 A0,

V= 40/ =302 - 257))

for As, G2 and by replace X by Y in the previous formulas. The estimator 4; for the
extreme value index +; is often called moment estimator.
Using these definitions, 2(1 — F;(x)) may be estimated by

@ —bi(n/k)\ 1/
L= Fyps(o) = (143720 m0=)

Write 1 — F(z,y) as a short form for (1 — Fi(z),1 — F5(y)), and likewise 1 —
Fa,b,'y = (1 - Fal,bl,'yu 1- Faz,b2,72) and 1 — F&,I;,-‘i = (1 - &1,51,"71’ 1- Fdz,i?m’?z)
are functions from R* to [0,00]>. Then the transformed failure set 2(1 — F(Cy))
can be approximated by

Dn =1- Fa,b,‘y (Cn)

which in turn is estimated by

~

Dy :=1—F, 3 +(Cy).

Now we may argue heuristically as follows, using a generalisation of the scaling
property (6.3.2) to inflate the transformed failure set by the factor 1/¢, for some
¢n — 0 chosen in a suitable way:

pn = P{1-F(X,Y)el-F(C,)}
~ P{Z(1-F(XY)) €Dy}

Q

ci/ﬂp{%@ - F(X,Y)) € &} (6.3.4)

Cn

Q

cl/ﬁP{(Xﬂf) € B}lB — F—l (1 . &)

a,b,5 Cn
~ c;/ﬁ% ; 1{(Xi, v;) e F L (1 - lc)—:)} (6.3.5)

N (6.3.6)
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where 7} denotes one of the estimators examined in Section 6.2.

In the sequel we state the exact conditions under that we will prove consistency
of the estimator p,, that is, p,/p, — 1 in probability as n — co. In order not to
overload the paper, we will not determine the nondegenerate limit distribution of
the standardized estimation error. However, employing the ideas of de Haan and
Sinha (1999), one may establish asymptotic normality of p, under more complex
conditions.

To study the asymptotic behavior of p,,, we have to impose a regularity condition
on the sequence of failure sets C),, or rather on the transformed sets D,,. Note that
D,, shall shrink towards the origin because we are interested in extremal events. We
assume that, after a suitable standardization, D,, converges in the following sense:

(D) There exist a sequence d,, — 0 and a measurable bounded set A C [0, 00)? with
v(A) > 0 such that for all € > 0 one has for sufficiently large n

D
A T C A
e C dn C Ay

Here A4. := {z € [0,00)* | infyea [l —y|| < e} and A_. :=[0,00)\ (([0, 00)*\
A)4.) denote the outer and inner e—neighborhood of A with respect to the max-
imum norm ||z —y|| = |£1 —y1|V |22 — y2|, and v is the measure corresponding
to the function ¢ (cf. Section 6.2).

Note that d, and A are not determined by this condition as the former may be
multiplied by a fixed factor and the latter divided by the same number. Moreover,
even for given d,, the set A is determined only up to its boundary.

Condition (6.3.3) on C,, implies

(x,y) € D, = [0,2] x[0,y] C D, (6.3.7)

Example 6.3.1. For C), = [xy, 0] X [yn, 0] we have D, = [0,1 — Fy, 5,4, (%n)] X
[0,1 — Fuy 55,7, (yn)]. Hence (D) is satisfied with d, = 1 — F,, 5, 4, (zn) if (1 -
Faz,b2,’Yz (yn))/(l - Fal,bl,’vl (.’L’n)) converges in (0’ OO)

This example demonstrates that essentially (D) means that the convergence of the
failure set in the x- and the y-direction is balanced.

Next we need a certain rate of convergence for the marginal estimators to ensure
that the transformation of the failure set does not introduce too big an error. For
that purpose recall that

Ri(t,z) :=t(1 - Fi(ai(t)z + bi(1)) — (1 +7z)™/7" - 0, i=1,2,

locally uniformly for z € (0,00] as t — oo, since F; belongs to the domain of
attraction of an extreme value distribution. Here we impose the following slightly
stricter condition:

R, 0 (£) = max sup ‘Ri(t;l')(l )] 50 (6.3.8)
=12 5, <o <1 /((—vi)VO)
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for some —1/(; V0) < z; < 1/((—v;) V0), i = 1,2. Observe that then (6.3.8) even
holds for all such z;. For example, if F; satisfies the second order condition
Ri(ta .’E)
Ai(t)

- U(x)

for some p;—varying function A; with p; < 0 (i = 1,2), then (6.3.8) holds true with
Ry, 2,(t) = O(A1(t) vV Az(t)). In addition, we require that not too many order
statistics are used for estimation of the marginal parameters:

KRy (3) = 0(1) (6.3.9)

for some x < 0. Then it follows that the estimators a;, Ei and #4; are Vk-consistent
in the following sense:

b; — b;

7

V& =yl =0p(k?), i=1,2 (6.3.10)

(cf. Dekkers et al., 1989; de Haan and Resnick, 1993).
We will see that using the estimated parameters instead of the unknown true
ones for the transformation of the failure sets does not cause problems provided

1

Wopo () = oK?)  with w. (z) i= —a" / wogudu.  (6.3.11)
T
Check that
—% logz ,v>0
Wy (z) ~ M =0
g <0
72 Y ’

as ¢ — 0. Though, at first glance, (6.3.11) seems rather strict a condition if one of
the extreme value indices is negative, it is indeed a natural one; for without it the
difference between the transformed set D,, and its estimate D,, would be at least of
the same order in probability as the typical elements of D,,, namely at least of the
order d,, which of course would render impossible any further statistical inference
on the failure probability.

In addition, the scaling factor ¢, chosen by the statistician when applying the
estimator p, must be related to the actual scaling factor d,, as follows:

dn, = O(cp), w.,le(Ccl—n) =o(k'/?) and (Ccl—n)l/" = 0((r(n))1/2). (6.3.12)

n n

In particular, (6.3.12) is satisfied if ¢, and d,, are of the same order. Below the
choice of ¢, is discussed more thoroughly.

Recall from Section 6.2 that the scaling property (6.3.2) is a consequence of
approximation (6.2.6) and the homogeneity of the measure v. In order to justify
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(6.3.4) in the motivation for p, given above, we need the following modification of
(6.2.6), which is suitable for more general sets than just upper quadrants:

P{1- F(X,Y)€e1- F(B)}

=0 6.3.13
Bsélgn q(k/n)v(%(1 - F(B))) ‘ - as n — 0o ( )
where
- l_F&""(Cn) a b—-»d 3
Bui={F 3 (1- ) \ |2 =1 v IP2 ) v I =l < )

for some &, — 0 such that k!/2e,, - oo, and

B, := B, U {cn, U B}.

BeBm,m>n

It will turn out (see (6.7.7)) that for sufficiently large n the denominator in (6.3.13)
is strictly positive.

Notice that the convergence of the absolute value in (6.3.13) for sets of the type
1 - F(B) =[0,zk/n] x [0,yk/n] is equivalent to convergence (6.2.6) with ¢t = k/n.

Finally, to make approximation (6.3.5) rigorous, we need a kind of uniform law of
large numbers. This is provided by the theory of Vapnik-Cervonenkis (VC) classes
of sets as outlined, e.g., in the monograph by Pollard (1984, Section I1.4). For this
we require

B= U B, is a VC class. (6.3.14)

neN

Theorem 6.3.1. Suppose the conditions (D), (6.3.3) (or (6.3.7)), (6.3.8), (6.3.9)
and (6.3.11)~(6.3.14) are satisfied. If i—n = Op((r(n))~'/?), logc, = o((r(n))'/?),
and k(n)/n is almost decreasing, which means sup,,>, k(m)/m = O(k(n)/n), then
Pn ) -
p_ — 1 in probability.
Remark 6.3.1. (i) In the most important case that np,, is bounded, the condi-
tions (6.3.11)—(6.3.13) can be jointly satisfied only if 1 A y2 > —1/2.

(if) The sequence k(n)/n is almost decreasing, e.g., if k(n) is regularly varying
with exponent less than 1 or, more general, has an upper Matuszewska index
a <1 (see Bingham et al., 1987; Theorem 2.2.2).

The scaling factor 1/¢,, by which the transformed failure set is inflated determines
the number of large observations taken into account for the empirical probability
(6.3.5). More precisely, according to (6.7.8) in the proof of Lemma 6.7.4, this number
is of the order r(n)(d, /c,)/". Hence if d,, and ¢, are of the same order then one
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uses essentially the same number S, (k, k) of observations as for the estimation of
71, which seems quite natural.

In practice, of course, d, is not known. However, conversely one may choose
¢p, such that about S, (k, k) observations lie in the inflated set D, /¢n. To be more
concrete, let
Dn,

)} > /\Sn(k,k)} (6.3.15)

n
-1
en(N) = sup {e > 0‘ z; 1{(X,,Yi) € F} (1-
i=
for some A > 0. Following the lines of the proof of Theorem 6.3.1, one may show that
¢n(A) and d,, are of the same order in probability, and that the resulting estimator
Pn is consistent for p,. Alternatively, one may employ a heuristic approach which
is common in univariate extreme value statistics: one plots p, as a function of ¢,
and choose a value ¢, where this graph seems sufficiently stable.

Finally, it is worth mentioning that it is not necessary to use the same number &
in the estimation of the marginal parameters and in the definition of 75 and 7j4. In
fact, one may prove an analog to Theorem 6.3.1 in more general settings, provided it
is guaranteed that the estimation error introduced when standardizing the marginals
is asymptotically negligible, that is, one has (6.3.10), (6.3.11) and (6.3.12) for some k
which may differ from the one used in the definition of the estimator for 7. Likewise
one may use other estimators for the marginal parameters, like e.g. the maximum
likelihood estimator examined by Smith(1987), provided these estimators converge
with the same rate.

6.4 Simulations

6.4.1 Methods
The estimators were tested on 4 different distribution functions:
(1) the bivariate Cauchy distribution (n = 1),

(2) the bivariate extreme value distribution (BEV) with a logistic dependence
function, with @ = 0.75 (y = 1), Ledford and Tawn (1996,1997),

(3) the bivariate normal distribution with p = 0.6 (n = 0.8) and

(4) the Morgenstern distribution with @ = 0.75 (n = 0.5), Ledford and Tawn
(1996,1997).

From each distribution we generated 250 samples of size 1000. A sample of each
the distributions is shown in Figure 1. Dependence in these distributions ranges
from clear asymptotic dependence (1) through weak asymptotic dependence (2)
and non-asymptotic dependence (3) to clear asymptotic independence (4).

The ML-estimator 7; was estimated by the GAUSS maxlik procedure Shoen-
berg(1996).

For each estimator two estimates for the root variance are reported:
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(i) the root variance for the general case, calculated as m~126;, i = 1,2, resp.
Sp(k,k)~/? 6;,i = 3,4 (cf. Theorems 6.2.2 and 6.2.3), and

0(q) the root variance for the case of asymptotic dependence, calculated similarly,
with n = 1.

For comparison the observed empirical standard deviation was calculated from the
250 simulated n estimates.

Correspondingly, one-sided 5% tests for dependence were carried out in two ways.
Asymptotic dependence is not rejected when

®((1-1)/6¢;y) <0.95 or alternatively ®((1—1)/5(q)) < 0.95

where ® represents the standard normal df.

Furthermore, we studied the finite sample behavior of the proposed estimators
of a failure probability. For this, failure sets of the type [a,00)? were considered,
where a was chosen such that the failure probability equals p, = (100n)~! = 1075
for the sample size n = 1000. We used 74 as the estimator for the parameter of tail
dependence and considered three different estimators of p,,:

Dy = Pn as defined in (6.3.6),

A l—l/ﬁf\
=c, n, and
p (6.4.1)

. |p1 if p=11is not rejected,
Py if p =1 is rejected.

Here ¢, = ¢, (1) is defined by (6.3.15) and the test for n = 1 is based on the variance
estimate (q). Note that p; is a natural analog to p; if it is known in advance that
71 = 1. In particular, in that case it is a consistent estimator of p;,.

For the normal distribution this resulted in many zero estimates; as this effect
was caused by the poor estimates of the marginal parameters, we also considered a
distribution with the marginals transformed to standard exponential.

6.4.2 Estimating 7 and testing for asymptotic dependence

The results are presented in Figures 2 and 3 and in Tables 1 and 2.

To make the performance of the different estimators for 7 comparable, m and &
were chosen in a range where the overall performance of the estimator under consid-
eration is best. This led to a smaller m for the Hill than for the maximum likelihood
estimator, because of the larger bias of former. Recall that Peng’s estimator is con-
structed from S, (k, k) and S,,(2k, 2k), while 7j4 is based on S, (4, §) only up to j = k.
For that reason we chose k for 74 double as large as for 7js.

The general picture is that 7j2, )3 and 74 show a bias (negative for the Cauchy,
BEV and normal distributions) that increases with m or k. The ML estimator 7j;
shows no clear trend, but it is biased for two of the distributions, though considerably
less than the other estimators. Note that although 7 < 1, the estimates 7j; may be
larger than 1.
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A comparison of the observed standard deviation with the appropriate estimates
(Tables 1-2: G4 for the Cauchy and BEV distributions, ;) for Normal and Morgen-
stern) shows the estimates are reasonable good. Note that the standard deviation of
71 and 72 on one hand and of 73 and 74 on the other hand are not fully comparable
as m and k have a different meaning.

Some observations:

¢ Peng’s estimator and ours are not stable at small k leading to missing values
for either 7 or & or both.

e The tests for asymptotic dependence tend to accept dependence for small &
or m and to reject dependence for larger values. This effect is due to the
increasing bias of the estimators for 7, which is not taken into account by the
tests. Consequently, the effect is weakest for the test based on 7.

e Hill’s estimator has the smallest observed and estimated variances.

o QOur estimator has a somewhat smaller observed variance than Peng’s, but both
have relatively large variance estimates for small k. Overall the ML estimator
has a variance comparable to ours but for small k resp. m it is clearly smaller.

To conclude: the outcome of all tests for asymptotic dependence depend on k, the
sample fraction used. The test based on the ML estimator 7j; has the great advantage
to be less dependent on k, but it is biased to rejecting dependence. Finally, due to
the smaller variance of the Hill estimator the corresponding test detects even small
deviations from the hypothesis, but on the other hand, due to its considerable bias,
for the Cauchy and BEV distribution the hypothesis is much more often wrongly
rejected than one would expect from the nominal level of the test. This disappointing
behavior indicates that the approximation of the distribution of the Hill estimator
by a centered normal distribution is rather inaccurate for moderate sample sizes.

All estimators and tests would benefit from a guideline for choosing k.

6.4.3 Failure probabilities

Table 3 summarizes the main results for the failure probability estimators. The
empirical distribution of the estimators for three values of % is shown in Figure 4.

For the Cauchy distribution we have asymptotic dependence, so p; is appropriate.
Figure 4 shows that it is biased for small &, probably related with the negative bias
of the v estimates of the marginal distributions. As expected p; has larger variance;
its smaller bias for small k is sort of a surprise.

For the normal distribution the main problem is estimating the marginals. The
71 and -y, estimates are negative. This implies upper bounds for the marginals and
in quite a number of cases the failure area lies outside one or both of the bounds
leading to a zero estimated failure probability.

In samples with the marginals transformed to exponential the estimator behaves
much better. The marginals are estimated more accurately now with 4; & 0. Still
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when both 4; estimates are negative a number of zero estimates result. The esti-
mator P, assuming asymptotic dependence over-estimates the probability, while p,
under-estimates it.

The Morgenstern distribution has asymptotically independent marginals. The
Dy estimate is nearly unbiased for £ = 80, 160 whereas the p; estimate is strongly
biased. Estimating the marginals does not cause problems here as the Morgenstern
distribution has extreme value (Fréchet) marginals.

6.5 An application: dependence of sea state parameters

In the course of the Neptune project, financed by the European Union (grant
MAS2-CT94-0081), the joint distribution of sea state variables was studied and its
consequences for the seawall at Petten. The data set, supplied by the Dutch Na-
tional Institute for Marine and Coastal management, consists of date, time and sea
characteristics recorded from 1979 till 1991, at three-hourly intervals at the Eier-
land station, 20 kilometers off the Dutch coast. After a declustering routine a set of
independent observations of waveheight Hm0, wave-periode Tpb and still water level
SWL was constructed and analysed. De Haan and de Ronde (1998) concluded that
the variables were asymptotically dependent, and estimated the failure probability
of the Pettemer zeewering assuming asymptotic dependence between the variables.
Figure 5 shows the joint distribution of pairs of these variables and illustrates the
estimation of asymptotic dependence. For none of the pairs asymptotic dependence
can be rejected although for quite a number of values of k the variances can not be
calculated.

6.6 Proofs for Section 6.2

The first results in this section closely follow Peng (1999). We first state slightly
rephrased versions of his Lemmas 2.1 and 2.2 concerning empirical probability mea-
sures. Define uniformly distributed random variables U; := 1 — Fi(X;), V; =
1 — F5(Y;) and denote the order statistics by Up,; and V,;, with the convention
Un,O = Vn,O =0.

We will use the following notation:

Si(z,y) :=Z HU; <z and V; <y},
i=1

Pi(z,y) :=P{U; < z and V] <y},

SQ(Z'Jy) ZZI{U’l <zorV; < y};
i=1

Py(z,y) :=P{U; <z or V] <y}.

(6.6.1)

Note that S2($7y) = 52(x70) + S2(07y) - Sl(.’L',y), Pz(.fL',y) =z+y- Pl(xay)) and
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Sn(j, k) (equation (6.2.4)) equals S1(Uy, j, Va,k) a.8.

Lemma 6.6.1. Assume (6.2.6). Let r(n) = n g(k/n) — co (which implies k — o0)
and k/n — 0. Then we have

Si(ka, ky)  Pi(la, by)
r(n) q(k/n)

r(n)( ) 2 Wi(z,y).

D S
Here, and below, — denotes convergence in distribution in D(]0,00)?) and Wy (z,y)
is a Gaussian process with mean zero and covariance structure

E{Wi(z1,y1)W1(z2,92)} = c(z1 A2, 91 A y2)-
Proof. See Peng (1999), Huang (1992) and Einmahl (1997, Theorem 3.1). O
Corollary 6.6.1. Assume (6.2.1). If additionally the sequence k(n) is such that
r(n) =nq(k/n) = oo, k/n — 0 and \/r(n) ¢1(k/n) = 0 then

k. k
(22 o) B waGe)

Proof. The extra condition on the sequence k(n) ensures that

kg k
Vit (Pt at) /’n")y) ~c(,y)) =0

uniformly on [0, A)? for any A > 0. O

Lemma 6.6.2. Assume (6.2.1). Let k — oo and k/n — 0. Then we have

VE(Era) _np by k) 0wy
Here Wa(x,y) is a Gaussian process with mean zero and covariance structure
E{Wa(z1,y1)Wa(z2,y2)} = x1 Az2+y1 Ayz—le(z1,y1) — le(z2,y2)
+le(x1 V 22,91 V y2)
Proof. See Peng (1999, proof of Lemma 2.2) and Einmahl (1997, Theorem 3.1). O

Corollary 6.6.2. Assume (6.2.1). Let k — oo and k/n — 0. Then

\/E(%Un,[kz] - :L') 2) —WQ(Z',O)

n D
ﬁ(zvn,[ky] - y) — _W2(0ay)'
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Proof. We will prove the first equation. Lemma, 6.6.2 implies

\/E(% En: U, < %w} —2) 2 Wy(z,0)

i=1
Note that the generalised inverse of  — 1/k> ., 1{U; < k/nz} equals z —
(n/k)Up [kq); applying Vervaat’s (1997) lemma gives the result of the corollary. [

Corollary 6.6.3. Assume the conditions of Theorem 6.2.2. Then

S1 (Un,[kw]a Vn,[ky]) D
V T(n)( r(n) —C(%,y)) — W(.’L’,y)
Wi(z,y) is a Gaussian process with mean zero and covariance structure depending
onl:

i casel =0

Wi(z,y) = Wi(z,y);

in casel >0
1
Vi
— Viez (2, y)Wa(x,0) = Viey(z,y)W2(0,y),

W('r7y) = (WQ(.’L‘,O) + W2(07y) - W2($7y))

where the term in the first line of the right hand side has the same distribution as
Wi ($7 y) .

Proof. For | = 0 the result follows from corollaries 6.6.2 and 6.6.1: we have r(n) =

o(k) and

r(n) (%Un’[kw] - x) —,0

r(n) (%Vn,[ky] — y) —p 0.

Otherwise, r(n)/k — I with [ > 0. Write

S1(Un,(ke)s Valky)) = k2] + [ky] — S2(Un,[ka]> Vi, (ky))
Py(Un,(ka2)> Vi, iky) = Un,ka) + Vs iy — Po(Un,[ka)> Vi k)

and the result follows from Lemma 6.6.2 and Corollary 6.6.2 (see Peng, 1999). O
Corollary 6.6.4. Assume the conditions of Theorem 6.2.2. Then

Sl (Un,[kw]aVn,[kz]) 1/n\ @ 1/n .
Vr(n)( 51 (Unt Vor) ') S W(z,z) — /"W (1,1) =: V().

Here % is convergence in D[0,1]. The process V(x) in this equation is Gaussian
with mean zero and covariance depending on 1 and l.
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Forl=0
E{V(2)V(y)} = (& Ay)"/" — (zy)"/".
Forl>0
E{V(z)V(y)} =(1 — 2lcy(1,1)cy(1,1)) (z Ay — (1 + D)zy)
+1e,(1,1)(1 = ley(1,1)) (yc(x, 1) +zc(y,1) —c(z Ay,zV y))
+1ey(1,1)(1 = leg(1,1)) (ye(1, z) + ze(1,y) — e(z V y,z A y)).

Proof. From Corollary 6.6.3 we have

S1(Un,ka], Vinfiea)) _ (@, ) +1r(n) H2(W (2, 2) + 0p(1))
S1(Unyes V) e(1,1) +7(n)=H2(W(1,1) + 0,(1))
c(z, ) _1/0 Wiz, z) W(1,1)
c(1,1) [1+7‘(n) / ( c(z,z)  ¢(1,1) )

+0p(r(n) /).

For the proof of the covariance formula in case of [ > 0, note that then ¢,(1,1) +
cy(1,1) =1. O

Remark 6.6.1. For [ = 0 the process {V(z")} is just a Brownian bridge.

Proof of Theorem 6.2.1. From Corollary 6.6.1 we have

li 51(2‘1’2 ) ( )
1 _— =
m ) clz,y

uniformly on say 0 < z,y < 2. Since

n

EU"’[IM] — ¢ and EVn’[ky] —+y

k
uniformly on 0 < z,y < 2 by Corollary 6.6.2,

1 (Un fial, Ve
im 2 Unfkas Vi k) _

n—oo T(n)

c(z,y)

uniformly. Hence S, (k, k)/r(n) = S1(Unk, Vak)/r(n) — ¢(1,1) and

1 k .. 1

251907, S1(Un.1kz1s Veikz1)d 1

% 2j=1 Sn(d: ) _ Jo S1(Un tkas Vi k) / oz, v)dz = 1 .
r(n) r(n) 0 1+1/n
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Proof of Theorem 6.2.2 (normality of fjs). By convergencein D[0, 1] (Corollary 6.6.4)

Sl( n,[ kz]JVn,UW]) 1/n
WW(/O AR R / «) /V

or equivalently

S1(Un,js Vij) 1 !
(1/k2 nk,Vn’k)) - 1+1/n) i/o V(z)dz. (6.6.2)

The distribution of [ V(z)dz is normal with

E{/OIV(m)da:} :/OIE{V(m)}dm:O
{/V dm/V dy}—2//E{V y)} dady.

Using Corollary 6.6.4, this variance equals

/ / Un(1 — y*/"dzdy

1/n
T RHnA/m+ 2

and variance

forl =0,

or

1
%lcw(l,l)(l —lcy(l,l))/0 c(u, 1)du

+ %lcyu, 1)(1 = leg(1,1)) /01 c(1,u)du

1, 1 1 1
“Pep(1,1)cy(1,1) = Zlep(1,1) = Zley(1,1) + —
+ 5l (1, 1)ey(1,1) = Fles(1,1) = 3ley(1,1) + 5

1
+ El(cm(l, 1)? +¢,(1,1)%), forl>0.

Finally

1
1+1/hs 141/py

i —n=1+mn)7*( )(1+0(1)).

This proves Theorem 6.2.2 for 7. O
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Proof of Corollary 6.2.1 (for fj4). By Corollary 6.6.3 we have
()" 81(Un,k, Vo) —p 1;

So Sp(k,k) = S1(Unk, Vo k) a.s. is a consistent estimator of r(n) in the theorem.
This proves Corollary 6.2.1. O

Remark 6.6.2. It is worth mentioning that the asymptotic normality of 7j3 can be
derived from Corollary 6.6.3 in a similar way.

Now we turn to the Ledford and Tawn - type estimators 7; and 7.
Let m,, = [r(n)] and denote by @, the tail empirical quantile function pertaining

to 7™, 1< i <n,ie.

Qn(t) =T s 0<t<n/my.

The following lemma is central to the proof of the asymptotic normality of estimators
for n based on largest order statistics of Ti(").

Lemma 6.6.3. Under the conditions of Theorem 2.2 there exist suitable versions
of Qn, a suitable process W equal in distribution to a standard Brownian motion if
1 =0 and to z — W(z,z) if l > 0 such that for all to,e >0

sup 7+ /24€

k _
w2 (2Qu(t) =t 7) —nt” W ()| = op(1),
0<t<tg n

Proof. First check that
SUTW > 2t = Y YRS > (n+1)(1-1/z) and RY > (n+1)(1 - 1/z)}

i=1 i=1
n

Z I{Ui < Un,[(n+1)/w] and V; < Vn,[(n-i—l)/w]} a.s.

i=1

with the convention Uy p41 = Vp ne1 = 1. Hence

_ 1 & n 1
Fu(z) := - E 1{#1@( ) > z} = 551 (Un,]'k/a:]_avn,fk/ﬂ —)
i=1

where f(z—) denotes the left-hand limit of f at x. From Corollary 6.6.1 one readily
obtains that

m;/Q(;zZ—(/mn)) - m_l/”)0<z<oo — (W(l/m, l/w))

0<z<oo

— (W(x",w")) =W

0<z<oo

=

n

a(k/n) ‘”)o<m<oo
= m,lz/2<<ﬁ’;1(q(k/n)t))il/ "—t) W

0<t<o0o

1/2<Fn(37_")
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weakly in D(0, 00), where in the last step Vervaat’s lemma has been used. For this,
note that W has a.s. continuous sample paths, because by the definition of W it is a
Brownian motion for / = 0 and it can be represented as a sum of Brownian motions
if I > 0.

Consequently for suitable versions

= —1/n _ A
(F’;l(q(k/n)t)) =t—m, ' PW(t) + o(m,'/?)
a.s. uniformly on compact intervals bounded away from 0. The §-method yields
F, ' (q(k/n)t) =t " (1 Fm P W) + O(mﬁl/Q))

uniformly in the same sense. Check that F,; 1 (q(k/n)t) = k/(n+1)Q,(r(n)t/m,) =
k/nQn(t)+O(1/m,) uniformly and supg.,<gt~1/2+¢|W(t)| = op(1) as 9 | 0 by the
law of the iterated logarithm and the aforementioned representation of W. Thus it
remains to prove that for all § > 0

LQn(t) - t*"‘ > 6} =0. (6.6.3)

lim lim s P{ S 1/24n+1/2+e
ﬁn im sup up m,, T

n—oo 0<t<y

For this, we restrict ourselves to considering

P{ g, 0 (5 7) > 8}

. k n
S P{H].Slgmn'ﬂ‘f—].n—HTT(L’7371+1>$Z’n}

k
P{EI 1<i<mpd+1: ] 7(:2—1'-1-1 >z and x; , < k} (6.6.4)

with

- (mL'n)—n +(().an_l1/2 (mi'n)—(ﬂ-i-l/%-s)-

(The other inequality can be treated in a similar way.)
Let A,’ = l/UZ, Bz = 1/% and

Si(@,9) = Z Liaisz and B>y = S1(1/2=,1/y=).

i=1

Then the right-hand side of (6.6.4) equals
P{H 1<i<mpd+1: 51 (Anyn_[k/-'li,n“"l‘l’Bnqn_rk/wi,n]+1) >iand z; , < k}

Now we distinguish two different ranges of i-values.

Case 1: i <=1, := [((Sm%/L)l/(1/2-i-6)]7 Tin <k
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j}ccording to Shorack and Wellner (1986, Theorem 10.3.1), for all £ > 0 there exists
6 > 0 such that

1 ~
limsupP{EiQ <j<mp+1: JTA"’TWHI < (5} <g,

n—oo

and likewise for B, ;1. Thus

P{EI]- S ] S 7/n : gl(An,nf[k/zi,n]+17Bn,nffk/zi,n]+l) Z i and Tin < k}

< P{31<i <in: Si@indn/k,zindn/k) > i} +26.

Check that
" 5 mo/2( /e o SLE=Ymni—"(n /)"
ka:z,né > 5kmn ( n) 0 > 0Lk~ " mIn ""(n/i)". (6.6.5)

Denote by Fr the d.f. of T; := min(4;, B;), i.e. 1 — Fp(z) = Py(1/z,1/x), so that
F;'is (—n)-varying at 1.

In case of < 1, we have k = o(m2t*) and F; ' (1—t) = o(t~ (")) as t | 0 for all
¢ > 0, so that the right-hand side of (6.6.5) is of larger order than Fz'(1—2i/(0Ln)),
provided ¢ < (1 —n)/2.

If n = 1, then one can show that, in analogy to Lemma 2.1 of Drees (1998a),

sup -Z_L—l Pl (t.Z'7t.’L')

< Pl(t,t) — T = O(ql (t))

Apply this bound with ¢ = k/n and 2 = i/(6Lmy,) to obtain 1 — Fr(z;,on/k) <
2i/(0Ln), since Pi(k/n,k/n) ~ q(k/n) ~ my/n and (i/m,) " ‘q(k/n)
= o(mkﬂql(k/n)i/mn) = o(i/my) uniformly for 1 < i < i,
Hence it follows that
limsupP{Ell < i <y 81 (xi 000k, x5 000 )k) > z}

n—oQ

< limsup P{El 1<i<in : Thpoit1 > Ea:i,ng}

n—oo k
< limsup P{ max Tn’"_H'l_ }
= 1<i<mn+1 Fp' (1 - 2i/(5Ln))
< €

for sufficiently large L, where for the last step again Theorem 10.3.1 of Shorack and
Wellner (1986) has been used.

Case 2: i, <i<mpd+1
In this case we use the convergence

. k I
lmlimsup P sup K/*4/2|Zdnnopunia =7 | > 8} = 0
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for all §,4 > 0, which is immediate from Theorem 2.1 of Drees (1998a). By arguments
similar to the ones given above, it suffices to consider P{3i, < i < m,¥¢ + 1 :

S1(Yisns Yin) > i} with

Yin = %xi,n - gnk73/2wi/nz+b
_onanNT| —1j2( 8\ T s g 102
- k(mn) 1+ m (mn) 3k (mn) x

X (1+5m;1/2(i

Mn
> %(an)—n :1 + ng—Ll/Q (min)—(l/%-s)]

) *(1/2+E)) 3/2+L]

for 1 < e and § < 6(1+ L)~ B3/2+49 /2 since k > m,, and 5 < 1. Therefore

113?01 limsup P{3i, < i <m,®+1: 5 (Yin,vin) > i}

n—oe

< lginlimsupP{Elin <i<mp9¥+1:

n—00
m;/Q (min)n+1/2+s(ng7n_i+l B (an)—n) S 5/2}

= 0,

again by Theorem 2.1 of Drees (1998a), where (2.1) implies Condition 1 of that

paper and mY/>q; (k/n) — 0 ensures that the bias is asymptotically negligible.
Combining both cases one arrives at (6.6.3). O

Proof of Theorem 6.2.2 (asymptotic normality of 71 and 7js ). Note that this approx-
imation is analogous to the approximation of the tail empirical quantile function es-
tablished in Drees (1998a) in the classical situation of i.i.d. random variables. Hence
the asymptotic normality of 7j; and #j follows from Lemma 6.6.3 exactly as in Drees
(1998a, Example 4.1) and Drees (1998b, Example 3.1) using the §-method. The
asymptotic variance is given by

/0 /0 Cov(W(s), W () (st) T+ v, (ds) v, (dt)

with v, (dt) == (n + 1)2(t" — (2n + 1)t*7)/ndt + (n + 1)e1(dt) for the maximum
likelihood estimator 7j; and v, (dt) := n(t"dt — £1(dt)) in case of the Hill estima-
tor. (Here £; denotes the Dirac measure at 1.) Now using the homogeneity of
order 1 of the covariance function which implies fot Cov(W (s), W (t))(st) 1ds =
fol Cov(W (u), W(1))u~"! du, one obtains (y + 1)2Var(W (1)) and n*Var(W (1)), re-
spectively, as asymptotic variance and thus the assertion, using ¢ (1,1) +¢,(1,1) =
1/n. O
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Proof of Theorem 6.2.3. Note that according to Corollary 6.6.3

SO CORLACRIRD

uniformly for 1 < 4,j < 2k. Hence [ — [ in probability by the definition of r(n).
Moreover,

/a4 KDk, 1) — o1, 1) + Op((r(n) ~1/2)
1+ 0p((r(n) 172))

= ¢;(1,1)+Op (k1/4(r(n))—1/2)

5 (1,1

é,(1,1)

if n > 1/2. The consistency of ¢,(1,1), dy and d» can be proved in a similar way, so
that the consistency of 67 follows readily in that case.
In case of n < 1/2, we have

1/26,(1,1) = Op ((r(m) /)/2(1 + K4 (r(n)) /%)) = 0p(1)

and likewise I'/2(¢,(1,1) + dy + d2) — 0 in probability. Thus the consistency of
is obvious because of [ = 0.
Assertion (ii) follows similarly from

ET(n,u) _ t - +0P(m—1/2)
n mn=lmat] c(1+u,1) "

which in turn can be verified using the same arguments as in the proof of Lemma
6.6.3. 0

6.7 Proof of Theorem 6.3.1

The proof of Theorem 6.3.1 will be established in several steps. The following se-
quence of equalities and asymptotic in probability equivalences provides an overview
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over the reasoning:

pa =  P{1-F(X,Y)e1-F(C,)}
WO k
(6:3.13) q(ﬁ)y(%a — F(Ch)))
v 72 oK)y p,)
(6.2.2) k Dn
= ciMCI(H)V(Z)
cor.6.7. k . ﬁn
r§a7 3 c}/nq(ﬁ)ll(l - Fa,b,‘y (F&,;—f?(l B Z)))
. L _ D,
emma 6.7.3 c;/"q(E)V(E(l_F(F&’;”Y(l_a)))
(6.3.13) 1/n
3 ¢/"P{1-F(X,Y)€1l-F(B)} .
|B = a,;,-“r(l a ]3:)
Lemma 6.7.4 Cl/nl il{(X' Y)eF;; (1= &)}
A 2 iy Li a,b,y Cn
o (6.7.1)

Lemma 6.7.1. Let a = a(n),a > 0, b,b,7,7 € R denote sequences such that

a b—b
21 e 5~ = 0(e,
|~ = VI[—]VIT =1l =0(en)
for some e, | 0. Suppose that the sequence A\, > 0 is bounded and satisfies
enlog Ay = 0 and epwy(Ay) = 0 with w., defined in (6.3.11). Then
1= Fy 5 -(F o (1—2) =2 +0(\) (6.7.2)

uniformly for 0 < z < A,.
Proof. First check that

z77 -1 + b—I;)]—l/W

T() =1 Fyj (ot (1—2) = [1+ 7%( :

a,b,y

where, as usual, (z77 — 1)/v:= —logz if ¥ = 0. Now we distinguish three cases.
v > 0: Then

T(z)

(1+ (14 0(En)@ ™ — 14 0(en))) “HOEI

(m‘”(l +0(en)) + 0(€n)) —(14+0(en)) /v
= zexp(O(e,)logz)(1 + o(1)).
For Ape, <z < A\,

[log zlen < (|log An| + |logen|)en — O,
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so that T(z) = z(1 + o(1)) = z + o(A,) uniformly.
Otherwise, i.e. for 0 < x < Apen,

T(z) < T(Anen) = Anen(1+0(1)) = o(An) = z + o(Ap)

by the monotonicity of T'.
4 < 0 : Choose 6, — 0 such that £,(A,0,)? — 0 and hence also &, logd,, — 0
(e.g. 0, = (€nA})"Y/2M). Then uniformly for A\,6, <z < A,

T(z) = 2F9C) (14 0(e) + Oen(Mndn)™)) "0 = 51 4 0(1))

and again (6.7.2) follows from the monotonicity of T'.
4 = 0 : Note that ¥|logz| — 0 uniformly for \,e, < z < A,,. Hence a Taylor
expansion of log yields

T(x)

exp (= 5108 (1+5(1+ Ofe)) (~log + 0(e.) )

1
exp(—f
Y

[’y(l + O(en)(=logz + O(eyn)) + O(f”yz(loga: + O(sn))2)])

= ZITexp (O(En) logz + O(en) + O(e, 10g2 £L'))
= 2(1+o0(1)

and thus the assertion by the aforementioned arguments. O

Remark 6.7.1. For fixed sequences a,b and =, assertion (6.7.2) even holds true
uniformly for

L. I a b—b, ._
(@,5,7) € M(en) = {(@5,7) € (0,00) x B | |2 = 1|V [7=2| V|7 = 7] < e .
(6.7.3)

Corollary 6.7.1. If condition (D), (6.3.7) and (6.3.10)—(6.3.11) are satisfied then,
for all 6 > 0,

D,
P{A_(s C d_ C A+5} — 1.
Proof. Since the set A is bounded, there exists L > 0 such that D,, C [0,d,,L)? for
all sufficiently large n. Because of (6.3.11), one can find a sequence &,, — 0 such
that kil/z = o(e,) and the conditions of Lemma 6.7.1 hold for A, = d,L. Then
P{(a,b,4) € (M(g,))?} — 1 with M(g,,) defined in (6.7.3) and Lemma 6.7.1 yields

_ )
sp 1= Fygs(Frp (1= @0) = @l < 5dn (674)
(z,y)EDx

with probability tending to 1. Thus, in view of D = 1 — Fj 5 <(F, (1 — Dy))
and condition (D),

D, D,
P{EC(—

. )+6/2 C A+5} — 1.
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On the other hand, by the definition of the inner neighborhood of a set, (z,y) €
(Dn/dn)_s/2 implies (z +6/2,y +6/2) € Dy /dy,. Since, in view of (6.7.4),

dn(z,y) <1-Fz 54 (Fa_,;ﬂ (1 —dn(z+ g’y + g)))

componentwise, (6.3.7) shows that indeed dy,(z,y) € D,. Hence, again by condition
(D),
D,

Dy,
P{Afé C (dn)76/2 C %} — 1.

O

Corollary 6.7.2. If the conditions of Corollary 6.7.1 hold and, in addition, (6.3.12)
then, for all § > 0,

Cn —1
P{a s c (= sy (F 3 (1-77))) € Aps) = 1.
Proof. According to Corollary 6.7.1, there exists L > 0 such that
P{Dp/cn C [0,A\n)?} = 1 for A, := Ldn/cn. It follows from (6.3.10) and (6.3.12)
that AJi = X% (1 + op(1)), i = 1,2. Hence one may apply Lemma 6.7.1 with
(a,b,7) = (@i, bi, %) and (@,b,%) = (ai, bs,v:) to obtain

- 0dy,
sup |1 = Fapy(Fpg (1= (,9)) = (@.0)| < 5.7
(z,y)€D /cn n

with probability tending to 1 for all § > 0. Now one may conclude the proof following
the lines of the preceding proof. O

Corollary 6.7.3. Under the conditions of Corollary 6.7.2

_ D, D,
v(1= Fapn (g (1~ E))) = (1) (1 +op(1)).

Proof. Denote the boundary of the set A by 0A. Condition (6.3.7) implies a slightly
weaker version for A, namely (z,y) € A = [0,z) x [0,y) C A. Hence A-9A C 0A
for all A € (0,1) and these sets are pairwise disjoint. Since v is homogeneous in the
sense of (6.2.2) and v(A) < oo by the boundedness of A, it follows that v(0A) = 0.
Moreover, Ays\ A_s | 0A as § | 0, so that v(A4s5\ A_s) = 0. Thus Corollary 6.7.2
and condition (D) yield

V(1= Fapan (P, (1= 2))) = v

and v(D,/d,) — v(A). Now the assertion is an obvious consequence of the homo-
geneity (6.2.2). O
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Lemma 6.7.2. If condition (D), (6.3.7) and (6.3.8) hold, then

n

v(D,) = I/(k

(1= F(Cn)))(1+o0(1)).

Proof. There exists L > 0 such that D, C [0,d,L]* for all sufficiently large n.
Choose arbitrary —1/(v; V0) < z; < 1/((—v;) V 0), ¢ = 1,2. Then, by (6.3.8), for
all (z,y) € D,

n -
" (1 F(ELE, (1~ (2,9) = (o1 +62),5(1+ 8,)) (6.7.5)
with |0,| V |0, < Ry, 2.(n/k) for sufficiently large n. According to (6.3.7), the left-
hand side of (6.7.5) is an element of Dy (1 + Ry, 5,(n/k)). Thus, by the definition

of D,,

n n
E(l - F(Cn)) c Dn(l + Rwlﬂz(%))'

Likewise, (6.7.5) together with (6.3.7) implies

Da(1 = Ray s (7)) € 1(1 = F(Ca)

eventually. Now the assertion is obvious from the homogeneity property (6.2.2). O

Lemma 6.7.3. Under the conditions (D), (6.3.7), (6.3.8) and (6.3.10)—(6.3.12) one
has

(1= Fapoy (P (1= 299)) = o(21 = FEE (1= 229))) 0+ 00

&,b,"i' cn &,b,"i' cn

Proof. The proof is very much the same as that for Lemma 6.7.2 with D,, replaced
by 1 — Fa,b,7(F;§‘7(1 — D, /¢y)). For this note that, by the boundedness of d,, /¢,

and the assertion of Corollary 6.7.2, this set is eventually bounded. Hence (6.3.8) is
applicable for sufficiently small z; and z,. O

Lemma 6.7.4. If the conditions of Theorem 6.3.1 are satisfied, then

s 1{1 - F(X;,Y;) €1 - F(B)}

n i=1 irti . .

-1 = 0 bability.

b | P1-F(X,Y)el—F(B)} W prodaduity

Proof. We will apply Theorem 5.1 of Alexander (1987). To check the conditions

of this uniform law of large numbers, first note that every set B € B, can be
represented as

) (6.7.6)

ﬁ,l;,";' Cn
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with (@, b,7) € (M(en))? (cf. (6.7.3)). Therefore the arguments of the proofs for
Lemma 6.7.3 and Corollary 6.7.3 show that

V(= PB)) = w1 Fapa(B)1+0(1) = () (1 + o(1)
= (Ccl—:)l/"V(A)(HO(l)) (6.7.7)

uniformly for B € B,, (cf. Remark 6.7.1). Now (6.3.13) leads to
Ey (dn

LG

uniformly. In particular, there exists ng such that P{1-F(X,Y) € 1-F(B)} < 1/2
for all n > ng and all B € B,,.
Next note that

Bt = U B
BeB,,n>ng,P{1-F(X,Y)€1l—F(B)}(1-P{1-F(X,Y)€1-F(B)})<t

C U B. (6.7.9)

BEB, ,n>no,P{1—F(X,Y)e1—F(B)}<2t

P{1-F(X,Y)e1-F(B)} = q( ) /"0 (A)(1 + o(1)) (6.7.8)

In view of (6.7.6), one may prove as in Corollary 6.7.2 that, for all § > 0, eventually
1-Fop(B) C Aysdy/cy for all B € By,. Hence it follows as in the proof of Lemma
6.7.2 that

dy
(1= F(B)) C 22 Ay5(1+o(1)) (6.7.10)

n

>3

uniformly for B € B,.
Let n(t) :== min {n > ng|q(k/n)(dn/cn)*/"v(A) < 3t}, which tends to oo as t
tends to 0. Combining (6.7.8)—(6.7.10), we arrive at

_ k(n)d,
1-FB) ¢ |J H2% 4040
n>n(t) "
C 2 sup k(n)dn
n>n(t) NCn

Ays

for sufficiently small ¢. By (6.3.13), the regularity condition on k(n) and the defini-
tion of n(t) it follows that

P{1-F(X,Y)e1 —F(Bt)} _ O(q(k(”(t)))(kn(t) sup k(n)dn)l/ﬂ)

n(t) k(@) n>n@ nen
- k(@) (dnyi/n
- O(q( n(t) )(a) )
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Since B,, is a VC class, Theorem 5.1 of Alexander (1987) yields
5 i, H1 - F(X,,Y) € 1- F(B)}
P{1-F(X,Y)el-F(B)}

Be€B,,P{1-F(X,Y)€1l—F(B)}> en} -0,

sup{ —1“

provided ne,, — oo. Because of (6.7.8) and the last assumption of (6.3.12), the
choice &, = q(k/n)(dn/cn)/"v(A)/2 leads to the assertion. O

Proof of Theorem 6.3.1. Now the consistency of p,, can be proven as shown in
(6.7.1). For this note that, because of (6.3.10), F(;g_y(l—Dn/cn) belongs to B, with

probability tending to 1 and that log ¢, = o((r(n))'/2) implies i/ = ci/"(1+0p(1))
since 7} was assumed /r(n)—consistent for 7. O

Appendix. Some analytical results

Write Q(z,y) = P{1 — Fi(X) <z and 1 — F»(Y) < y}. Asin (6.2.1) suppose
Q(tx,t
lim (q(t)y) —c(z,y)

i o) =: ¢1(z,y) (6.A.1)

exists for z,y > 0 (but z +y > 0) with ¢ positive, ¢, (¢) = 0, (¢ | 0), & non constant
and not a multiple of ¢ and w.l.o.g. ¢(1,1) = 1. Moreover assume that (6.A.1) holds
uniformly on

{(z,y) 2" +y> =1,2> 0,y > 0}.
It is easy to see that this implies the same for the limit relation
Qtz,ty) _

ez,
lim ey e (9)
t40 0 (t)

=0 (Z’,y) - é1(17 1)C($7y) =: Cl(xay) (6A2)

with ¢; (z,y) Z 0. Clearly ¢; is a regularly varying function with non-negative index.

Proposition 6.A.1. Under the stated conditions, relations (6.A.1) and (6.A.2)
hold locally uniformly on (0,00)%. If the index of the reqularly varying function
q1 is strictly positive, the relation holds locally uniformly on [0, 00)?.
Proof. Relation (6.A.2) implies that the function Q(z,z) is regularly varying of
second order (cf. de Haan and Stadtmuller, 1996), hence we can assume that
c(z,2) = 2'/" and ¢1(z,2) = /72 =L with 1/n the index of regular variation
of ¢ and 7 > 0 the index of regular variation of ¢ .

Let (x(t),y(t)) converge to (z,y) € (0,00)% as t | 0. Write (z(t),y(t)) =
a(t)(u(t),v(t)) with u?(t) + v%(t) = 1. Then, as t | 0, (u(t),v(t)) = (u,v) an
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a(t) - a > 0, say and

Qtx(t), ty(t)) _ Qta(t)u(t),
ta(

Qt,t) Qlta

It follows that
A — c@(0),y®) _

: C1 (’LL, ’U) C1 (aa a)
1 T
i =@ (") * et )
o
The proof shows that the following relation holds.
Corollary 6.A.1. For a,u,v >0
-1
e (au, av) = a'/" ey (u,v) + a'/n2 c(u,v) (6.A.3)

(remember we have chosen qi in such a way that ¢y (a,a) = a/" %)

Remark 6.A.1. Write

Then for all h, s and ¢
R(s + h,t + h) — R(s,t) = R(s,t)(e"™ — 1) + R(h, h).

Hence

Ri(s,1) = lim R(s + h,t+ h) — R(s,1)

Lim A = TR(s,t) + R1(0,0) = T7R(s,t) + 1.

This means that for 7 = 0,

Ri(s,t) =1 for all s,
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and 7 >0
Ri(s,t) = TR(s,1)

with R(s,t) := R(s,t) + 1/7. Hence 7 and the values of ¢;/c on the unit circle
determine the values of R(s,t) everywhere.
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Morgenstern distributions have Fréchet marginal distributions; for easy comparison
a marginal transformation to the same distribution was applied to the Cauchy and
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Table 1: The ML-estimator, 7, and the Hill estimator, 7 (sample size n = 1000).
Tabulated are mean and observed standard deviation of the estimator, and mean
of estimates 6(; and G(4). The last column indicates the proportion of samples in
which asymptotic dependence hypothesis is accepted in size 5% tests, based on 6;
resp. o(g)-

N Standard deviation n = 1 accepted; test
my || avg. | observed (3(,-) &(d) with &(i) with (3((1)

ML, 7
Cauchy 80 || 0.96 0.171  0.167 0.171 0.888 0.916
160 || 1.01 0.125 0.112 0.111 0.932 0.952
240 || 1.03 0.099  0.083 0.082 0.956 0.964
BEV 80 || 0.91 0.159  0.146 0.153 0.812 0.860
160 || 0.91 0.112  0.094 0.098 0.676 0.720
240 || 0.90 0.093 0.070 0.073 0.552 0.584
Normal 80 || 0.72 0.166  0.125 0.146 0.360 0.384
160 || 0.74 0.120  0.080 0.092 0.160 0.184
240 || 0.74 0.090 0.059 0.067 0.044 0.052
Morgenstern 80 || 0.47 0.156  0.123 0.167 0.052 0.060
160 || 0.49 0.105  0.077 0.104 0.000 0.000
240 || 0.50 0.082  0.057 0.076 0.000 0.000

Hill, 7
Cauchy 40 || 0.93 0.119  0.115 0.124 0.808 0.88
80 || 0.89 0.083 0.076 0.085 0.572 0.63
120 || 0.84 0.064  0.056 0.067 0.148 0.22
BEV 40 || 0.87 0.112  0.100 0.114 0.60 0.71
80 || 0.84 0.075  0.064 0.076 0.29 0.34
120 || 0.82 0.058  0.049 0.059 0.05 0.08
Normal 40 || 0.73 0.099 0.0817 0.112 0.120 0.184
80 || 0.74 0.067 0.0535 0.073 0.008 0.008
120 || 0.73 0.052 0.0409 0.056 0.000 0.000
Morgenstern 40 || 0.51 0.072 0.0663 0.129 0.0 0.0
80 || 0.53 0.050 0.0443 0.084 0.0 0.0
120 || 0.54 0.042 0.0344 0.064 0.0 0.0
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Figure 2: The ML-estimator, 71, on the left and the Hill estimator, 72, on the right
as a function of m,, (sample size n = 1000). The graphs show the average over 250
samples (solid line). Observed standard errors are indicated by the dashed lines
(£ 1.64 st.deviations). The horizontal lines indicate 7 = 1 and the true 7 for each

distribution.
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Table 2: Pengs estimator, 73, and our estimator, 7, (sample size n = 1000). Tab-
ulated are mean and observed standard deviation of the estimator, and mean of
estimates G(; and 6 (4); the proportion of samples in which asymptotic dependence
hypothesis is accepted in size 5% tests, based on ;) resp. G(4); the last column gives
the number of samples (out of 250) in which either 7 or 62 could not be calculated.

7 Standard deviation 1 = 1 accepted
k || avg. | observed 0i) 0(q) | Indep.  Dep. | Missing
Peng7 ﬁ3

Cauchy 40 || 1.05 0.361 0.231 0.249 0.92 1.00 6
80 || 0.97 0.178 0.158 0.176 0.88 1.00 1
120 || 0.88 0.120 0.114 0.145 0.67 0.97 1
BEV 40 || 0.96 0.228 0.196 0.232 0.90 1.00 5
80 || 0.85 0.124 0.123 0.170 0.60 0.97 2
120 || 0.80 0.086 0.093 0.137 0.28 0.67 0
Normal 40 || 0.78 0.194 0.181 0.304 0.60 1.00 2
80 || 0.75 0.093 0.116 0.192 0.27 0.94 0
120 || 0.74 0.072 0.086 0.144 0.05 0.27 0
Morgenstern 40 || 0.55 0.221 0.239 0.741 0.32 1.00 10
80 || 0.54 0.108 0.122 0.372 0.03 1.00 0
120 || 0.55 0.070 0.088 0.253 0.00 0.10 0

This paper, 7
Cauchy 80 || 1.03 0.230 0.202 0.191 | 0.891 0.94 1
160 || 0.97 0.144 0.133 0.136 | 0.832 0.92 0
240 || 0.89 0.098 0.095 0.109 | 0.612 0.72 0
BEV 80 || 0.96 0.174 0.171 0.176 0.83 0.911 2
160 || 0.86 0.099 0.098 0.115 0.55 0.680 0
240 || 0.82 0.067 0.072 0.090 0.23 0.304 0
Normal 80 || 0.79 0.146 0.144 0.187 | 0.500 0.700 0
160 || 0.76 0.080 0.083 0.113 | 0.124 0.260 0
240 || 0.75 0.058 0.061 0.084 | 0.040 0.056 0
Morgenstern 80 || 0.55 0.187 0.181 0.343 | 0.228 0.66 0
160 || 0.54 0.085 0.087 0.172 | 0.020 0.04 0
240 || 0.55 0.055 0.060 0.117 | 0.000 0.00 0




146 Tail dependence in independence

N I

— \/ 1 — \y 1

3 \/ \ B f \« 4

= \\ 4 = ‘. “ 4

RN RN

2 D et I B

= R ] sl 1

- / N

St , st j

= Y 2l 1

Ca 100 200 300 400 500 600 < 100 200 300 400 500 600
Cauchy distribution

IS ST

« ! ] ol O ]

al | =

2 Yy 1 bl S ]

" N
hd \ ] hd N ]
~ \

o AN ] o \K - )

E je T T T T T T T T T T - == ] E YT T T T T T T T T T T e T = -

N ] N ]

= Iy hd

|

=3 \\ b =3 :\‘ b

s a 100 200 300 400 500 600 s 100 200 300 400 500 600
Bivariate extreme value distribution

2 N

« ] ol I ]

- - hl

«@ 4 «@ | 4

- N

b I 1 by 1

\

o \ ] 2] 1

- » S

3 /\\/ 1 > ] 1

o ] ] of 1 ]

5 o W

“a 100 200 300 400 500 600 < 100 200 300 400 500 600
Normal distribution

< - <

g - 1 g

g a 100 200 300 400 500 600 g a ! 100 200 300 400 500 600

Morgenstern distribution
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Table 3: Estimating failure probabilities. The table lists the median values of the
estimates. The probability estimates are the estimate for the general case (p;), for
the asymptotic dependent case (p1), and p = p; or = p1, depending on whether
asymptotic dependence is rejected resp. accepted.
k " 72 7 Di P1 P
Cauchy 1 1 1 x1075
80 0.95 0.98 | 1.01 0.52 0.51 0.47
160 1.02 096 | 0.94 0.63 0.80 0.75
240 1.00 1.04 | 0.90 0.42 1.14 0.99

Normal 0 0 0.8 x10~3
80 || -0.15 -0.17 | 0.77 | 0.00003 0.00240 0.00005
160 || -0.20 -0.13 | 0.75 | 0.00000 0.00000 0.00000
240 || -0.17 -0.20 | 0.74 | 0.00000 0.00000 0.00000

Exponential /Normal 0 0] 0.8 x107°
80 || 0.016 0.040 | 0.77 0.20 2.2 0.61
160 || 0.062 0.036 | 0.75 0.36 3.7 0.44
240 || 0.045 0.058 | 0.74 0.39 6.1 0.43
Morgenstern 1 1] 05 x107°
80 0.99 1.01 | 0.54 1.1 27 19.7
160 1.03 097 | 0.53 1.3 58 1.3

240 1.00 1.02 | 0.55 2.0 84 2.0
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Summary

Three chapters of the thesis are concerned with optimality problems in univariate
extreme value statistics. The last two chapters are concerned with consistency and
asymptotic normality of estimators, the first chapter in the univariate setting and
the second one in bivariate extreme value theory.

Estimators in extreme value theory (for the extreme value index, for a high
quantile or for the probability of an extreme set) are based on a number, say k, of
upper order statistics from a sample of n observations. We consider the problem:
which sequences k = k(n) — oo, k(n)/n — 0 are optimal in the sense of balancing
the variance and bias components of the estimators. This problem has been solved
for high quantile estimators, for estimators of the endpoint of the distribution and
for estimators of the probability of an extreme set (outside or at the boundary of
the range of the available observations). This is the content of Chapters 2 and 3.

The problem of optimisation has been solved already in the case of the estimation
of the extreme value index. In that case one further step has been taken in this thesis
namely to construct a confidence interval for the tail index in the case of a non-zero
bias, which is the optimal situation. Moreover this has also been extended to high
quantiles. These are the contents of Chapter 4.

The remaining two chapters are concerned with the more basic problem of con-
sistency and asymptotic normality of estimators, albeit in more involved situations.
Chapter 5 offers a careful treatment of the asymptotic normality of maximum like-
lihood estimators for the extreme value index as well as the scale. Chapter 6 deals
with an estimator of the probability of an extreme set, that comes up when a two
dimensional probability distribution function has approximate independent compo-
nents in the far tail.
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Nederlandse samenvatting

De eerste drie hoofdstukken van dit proefschrift gaan over optimaliteitsproblemen
in ééndimensionale extreme-waarden theorie. De laatste twee hoofdstukken gaan
over consistentie en asymptotische normaliteit van schatters, het eerste van de twee
in de ééndimensionale opzet en het tweede in tweedimensionale extreme-waarden
theorie.

Schatters in extreme-waarden theorie (n.l. voor de extreme waarde index, voor
een hoog kwantiel of voor de kans op een extreme verzameling) zijn gebaseerd op een
aantal, zeg k, van bovenste order statistics van een steekproef van n waarnemingen.
Wij beschouwen het probleem: welke rijen {k} met k = k(n) — oo, k(n)/n — 0,
zijn optimaal in de zin van het afwegen van de variantie- en bias-componenten van
de schatter? Dit probleem wordt opgelost voor schatters van een hoog kwantiel, van
het eindpunt van de verdeling en voor de kans op een extreme verzameling (buiten of
op de grens van het gebied waar waarnemingen beschikbaar zijn). Dit is de inhoud
van de hoofdstukken 2 en 3.

In het geval van het schatten van de extreme-waarden-index was dit probleem
van optimalisering al opgelost. In dit proefschrift wordt in dat geval een stap verder
gezet: een betrouwbaarheidsinterval wordt geconstrueerd voor de staart-index in
het geval wanneer bias optreedt. Dat is namelijk de optimale situatie. Die bias is
meegenomen in het betrouwbaarheidsinterval. Bovendien wordt dit uitgebreid naar
het geval van hoge kwantielen. Dit is de inhoud van hoofdstuk 4.

In de overige twee hoofdstukken wordt teruggegaan naar het basisprobleem
van asymptotische normaliteit van schatters, maar dan in meer complexe gevallen.
Hoofdstuk 5 geeft een zorgvuldige behandeling van de asymptotische normaliteit
van grootste aannemelijkheidsschatters voor zowel de extreme-waarden-index als
de schaalfactor. Hoofdstuk 6 behandelt een schatter voor de kans op een extreme
verzameling die aan de orde is als een twee-dimensionale kansverdeling ongeveer
onafhankelijke componenten heeft in de verre staart.
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