A representation of max-stable processes *

Ana Ferreira ISA, Universidade Técnica de Lisboa

Laurens de Haan Erasmus University Rotterdam

Abstract

A standardized max-stable process on C(S) with S a compact subset of a Euclidean space has a simple representation involving a more or less arbitrary stochastic process.

 $\label{eq:Keywords: max-stable process, Poisson point process, Ornstein-Uhlenbeck process$

1 Introduction

Max-stable processes form a useful tool to model extremal behaviour in e.g. environmental processes like rainfall.

Probably the earliest example of a max-stable process has been given in Brown and Resnick (1977): Let O_1, O_2, \cdots be independent and identically distributed (i.i.d.) copies of the Ornstein-Uhlenbeck process. Consider the sequence of processes

$$\left\{ M_n(s) \right\}_{s \in \mathbb{R}} := \left\{ \bigvee_{i=1}^n b_n \left(O_i \left(s/b_n^2 \right) - b_n \right) \right\}_{s \in \mathbb{R}}$$

where the maximum is taken pointwise and $b_n = (2 \log n - \log \log n - \log 4\pi)^{1/2}$. Note that the b_n are chosen such that the $M_n(0)$ has a non-degenerate limit distribution. Then the sequence $\{M_n(s)\}_{s\in\mathbb{R}}$ converges in distribution in $C(\mathbb{R})$ to a process $\{\eta(s)\}_{s\in\mathbb{R}}$ with the following structure. $C(\mathbb{R})$ denotes the space of continuous functions on \mathbb{R} .

Consider a Poisson point process on \mathbb{R}_+ with mean measure $x^{-2}dx$. Let $\{X_i\}_{i=1}^{\infty}$ be an enumeration of the points of a realization of the point process. Also consider an i.i.d. sequence of Brownian motions $\{W_i(s)\}_{s\in\mathbb{R}}$, independent

^{*}Research partially supported by Fundação Calouste Gulbenkian and FCT/POCTI/FEDER

of the point process, where $W_i(0) = 0$ for all i = 1, 2, ... and the process goes off in a symmetric way in both directions. Then

$$\{\eta(s)\}_{s\in\mathbb{R}} \stackrel{d}{=} \left\{ \bigvee_{i=1}^{\infty} X_i e^{W_i(s) - |s|/2} \right\}_{s\in\mathbb{R}}.$$

We shall show that this structure - points of a Poisson point process marked by i.i.d. stochastic processes - is valid for any simple max-stable process in C(S) with S a compact subset of a Euclidean space. C(S) is the space of continuous functions f on S equipped with the supremum norm $|f|_{\infty} = \sup_{s \in S} |f(s)|$.

2 Main result

Let ξ be a stochastic process on C(S) with non-degenerate marginals, i.e. $\xi(s)$ is non-degenerate for all $s \in S$. The process ξ is max-stable if there exist continuous functions $a_n > 0$ and b_n , defined on S, such that if $\xi_1, \xi_2, \dots, \xi_n$ are i.i.d. copies of ξ ,

$$\left\{ \bigvee_{i=1}^{n} \frac{\xi_i(s) - b_n(s)}{a_n(s)} \right\}_{s \in S} \stackrel{d}{=} \left\{ \xi(s) \right\}_{s \in S}.$$

The probabilistic structure of those processes is fully captured, through a transformation of the marginal distributions, by a corresponding *simple* max-stable process. A stochastic process η in C(S) with non-degenerate marginals is simple max-stable if, with $\eta_1, \eta_2, \dots, \eta_n$ i.i.d. copies of η ,

$$\left\{\frac{1}{n}\bigvee_{i=1}^{n}\eta_{i}(s)\right\}_{s\in S}\stackrel{d}{=}\{\eta(s)\}_{s\in S}$$

and $P\{\eta(s) \leq 1\} = e^{-1}$ for $s \in S$. The first requirement determines the type of the marginal distribution, the latter fixes the scale (cf. Giné, Hahn and Vatan (1990)). We shall prove the following result.

Theorem 2.1. Let the process η be simple max-stable in C(S). Consider a Poisson point process on $(0,\infty)$ with mean measure dr/r^2 . Let $\{Z_i\}_{i=1}^{\infty}$ be the enumeration of the points of a realization of the point process. We can find i.i.d. non-negative stochastic processes V, V_1, V_2, \cdots in C(S) with

$$EV(s) = 1, \quad for \ s \in S,$$

$$E \sup_{s \in S} V(s) < \infty \tag{1}$$

such that

$$\eta \stackrel{d}{=} \bigvee_{i=1}^{\infty} Z_i V_i .$$

Conversely each process with this representation is simple max-stable.

The process V can be chosen is such a way that

$$\sup_{s \in S} V(s) = c \quad a.s. \tag{2}$$

with c some positive constant.

For the proof we use the following result by Giné, Hahn and Vatan (1990).

Proposition 2.1. Let η be a simple max-stable process in C(S). There exists a finite Borel measure ρ on $C_1^+ := \{ f \in C(S) : f \geq 0, |f|_{\infty} = 1 \}$ with the property that

$$\int_{C_1^+} f(s)d\rho(f) = 1 \text{ for all } s \in S ,$$

such that

$$\eta \stackrel{d}{=} \bigvee_{i=1}^{\infty} \eta_i$$

where $\{\eta_i(s)\}_{s\in S}:=\{Z_i\pi_i(s)\}_{s\in S}$ and $(Z_i,\pi_i),\ i=1,2,\ldots,$ are the points of a Poisson point process on $(0,\infty)\times C_1^+$ with mean measure $r^{-2}dr\times d\rho$.

Conversely each process with this representation is simple max-stable.

We also need the following auxiliary result.

Lemma 2.1. Suppose P is a Poisson point process on the product space $S_1 \times S_2$ with S_1 and S_2 metric spaces and the intensity measure is $\nu = \nu_1 \times \nu_2$ where ν_1 is not bounded and ν_2 is a probability measure. The process can be generated in the following way: let $\{U_i\}$ be an enumeration of the points of the Poisson point process on S_1 with intensity measure ν_1 and let V_1, V_2, \ldots be independent and identically distributed random elements of S_2 with probability distribution ν_2 . Then the counting measure N defined by

$$N(A_1 \times A_2) := \sum_{i=1}^{\infty} 1_{\{(U_i, V_i) \in A_1 \times A_2\}}$$

for Borel sets $A_1 \subset S_1$, $A_2 \subset S_2$, has the same distribution as the point process P.

Proof. We need to prove that the number of points of the set $\{(U_i, V_i)\}_{i=1}^{\infty}$ in two disjoint Borel sets are independent (which is trivial) and that the number of points $N(A_1 \times A_2)$ in a Borel set $A_1 \times A_2$, with $A_1 \subset S_1$ and $A_2 \subset S_2$, has a

Poisson distribution with mean measure $\nu_1(A_1)\nu_2(A_2)$. Now

$$\begin{split} P\left(N(A_1\times A_2)=k\right) \\ &= \sum_{r=k}^{\infty} P\left(N(A_1\times A_2)=k \mid \text{the number of points in } A_1=r\right) \\ &= \frac{\left(\nu_1\left(A_1\right)\right)^r}{r!}e^{-\nu_1(A_1)} \\ &= \sum_{r=k}^{\infty} \frac{r!}{(r-k)!k!} \left(\nu_2\left(A_2\right)\right)^k \left(1-\nu_2\left(A_2\right)\right)^{r-k} \frac{\left(\nu_1\left(A_1\right)\right)^r}{r!}e^{-\nu_1(A_1)} \\ &= \frac{\left(\nu_1\left(A_1\right)\nu_2\left(A_2\right)\right)^k}{k!}e^{-\nu_1(A_1)} \sum_{r=k}^{\infty} \frac{\left(1-\nu_2\left(A_2\right)\right)^{r-k}}{(r-k)!} \left(\nu_1\left(A_1\right)\right)^{r-k} \\ &= \frac{\left(\nu_1\left(A_1\right)\nu_2\left(A_2\right)\right)^k}{k!}e^{-\nu_1(A_1)\nu_2(A_2)} \;. \end{split}$$

Proof of Theorem 2.1. Let η be simple max-stable and $\{(Z_i, \pi_i)\}$ the points of the point process of Proposition 2.1. Let $\{(\tilde{Z}_i, \tilde{\pi}_i)\}$ be the points of a Poisson point process on $(0, \infty) \times C_1^+$ with mean measure

$$\rho\left(C_{1}^{+}\right)\frac{dr}{r^{2}}\times\frac{d\rho}{\rho\left(C_{1}^{+}\right)}.$$

Then the product measure remains the same and hence

$$\bigvee_{i=1}^{\infty} \tilde{Z}_i \tilde{\pi}_i \stackrel{d}{=} \bigvee_{i=1}^{\infty} Z_i \pi_i \stackrel{d}{=} \eta.$$

Next consider the collection of points $\{(\tilde{Z}_i, \tilde{\tilde{\pi}}_i)\}$ defined for $i=1,2,\ldots$ by

$$\tilde{\tilde{Z}}_{i} := \tilde{Z}_{i}/\rho\left(C_{1}^{+}\right)
\tilde{\tilde{\pi}}_{i} := \tilde{\pi}_{i} \rho\left(C_{1}^{+}\right).$$

Then $\{(\tilde{\tilde{Z}}_i,\tilde{\tilde{\pi}}_i)\}$ represents a Poisson point process on $(0,\infty)\times C_\rho^+$ with

$$C_{\rho}^{+} := \{ f \in C(S) : f \geq 0, |f|_{\infty} = \rho(C_{1}^{+}) \}.$$

We now argue that its intensity measure is

$$r^{-2}dr \times dQ$$

with Q a probability measure. The intensity measure of the first component is

$$\int_{\{z:z/\rho(C_1^+)\in A\}} \rho(C_1^+) \frac{dz}{z^2} = \int_A \frac{dz}{z^2}$$

for a Borel set A of $(0, \infty)$. The intensity measure of the second component is

$$Q(\cdot) := \frac{\rho\left\{f : f \ge 0, |f|_{\infty} = 1, f\rho\left(C_1^+\right) \in \cdot\right\}}{\rho\left(C_1^+\right)}$$

which is a probability measure.

Application of the Lemma now provides the representation of the theorem with V satisfying (2).

For the converse just follow the steps backwards.

It remains to prove that for the converse the requirement $\sup_{s \in S} V(s) = c$ a.s. can be relaxed to $E \sup_{s \in S} V(s) < \infty$. Checking the proof of the Proposition in Giné, Hahn and Vatan (1990), one sees that their condition which in our notation is $\sup_{s \in S} \tilde{\pi}_i(s) = \rho(C_1^+)$ for all i, is used only to ensure the finiteness of the process η . But this also follows from our weaker assumption: we consider now a probability measure Q on the space

$$C^* := \{ f \in C(S) : f \ge 0, |f|_{\infty} > 0 \}$$

with the property

$$\int_{C^*} |f|_{\infty} dQ(f) < \infty .$$

Then

$$P\left\{\sup_{s\in S}\eta(s)\leq x\right\}$$

 $= P\left\{\text{none of the points } \tilde{\tilde{Z}}_i\tilde{\tilde{\pi}}_i, i=1,2,\ldots, \text{ is in the set } \{f: f\geq 0, |f|_{\infty}>x\}\right\}$

$$= \exp\left(-\iint_{|f|_{\infty}>x} \frac{dr}{r^2} dQ(f)\right) = \exp\left(-\frac{1}{x} \int_{C^*} |f|_{\infty} dQ(f)\right) > 0.$$

Hence the process η is bounded.

Remark 2.1. The result can also be expressed as a representation using a family of (deterministic) spectral functions acting on a homogeneous Poisson process on $(0, \infty) \times [0, 1]$ as in de Haan (1984): there exist non-negative measurable functions $f_s(u)$ where $s \in S$, $u \in [0, 1]$ with

- i. for each $u \in [0,1]$ the function $f_s(u)$ is continuous in s,
- ii. for each $s \in S$

$$\int_0^1 f_s(u)du = 1 \; ,$$

iii.

$$\int_0^1 \sup_{s \in S} f_s(u) du < \infty ,$$

such that

$$\{\eta(s)\}_{s\in S} \stackrel{d}{=} \left\{\bigvee_{i=1}^{\infty} X_i f_s(Y_i)\right\}_{s\in S}$$

where $\{(X_i, Y_i)\}_{i=1}^{\infty}$ is an enumeration of the points of a Poisson point process on $(0, \infty) \times [0, 1]$ with mean measure $dr/r^2 \times d\lambda$ (λ is Lebesgue measure).

Corollary 2.1 (Sample behaviour). Consider the representation of Theorem 2.1 using the Poisson point process represented by $\{(Z_i, V_i)\}_{i=1}^{\infty}$. With probability one there exists a finite collection $\{(Z_j, V_j)\}_{j=1}^k$ such that

$$\eta \stackrel{d}{=} \bigvee_{j=1}^k Z_j V_j \ .$$

Proof. By Corollary 3.4, Giné, Hahn and Vatan (1990),

$$P\{\eta > 0\} = 1$$
.

Hence on a set of probability one we have both that $\eta > 0$ and that for all $\epsilon > 0$ there are only finitely many Z_i with $Z_i > \epsilon$. The result follows.

Remark 2.2. Consider the stochastic process on a compact subset S of a Euclidean space, defined by $\zeta := YV$ where Y is a random variable with distribution function 1-1/x, $x \geq 1$ and V a continuous stochastic process satisfying (1). Let ζ_1, ζ_2, \ldots be i.i.d. copies of ζ . It is easy to see that $n^{-1} \vee_{i=1}^n \zeta_i$ converges in C(S) to a simple max-stable process that has the representation of Theorem 2.1 with the same auxiliary process V. Moreover for a > 1

$$\{a^{-1}\zeta(s)|\zeta(0)>a\}_{s\in S}$$

has the same distribution as ζ . This property resembles a corresponding property for generalized Pareto distributions in finite-dimensional space. Note that the marginal distributions of this process are not Pareto: for x > 0

$$P\{\zeta(s) > x\} = x^{-1} \int_0^x P\{V(s) > u\} du.$$

References

- [1] B. Brown and S. Resnick: Extreme values of independent stochastic processes. J. Appl. Probab. 14, 732–739 (1977)
- [2] E. Giné, M. G. Hahn and P. Vatan: Max-infinitely divisible and max-stable sample continuous processes. Probab. Th. Rel. Fields **73**, 139–165 (1990)
- [3] L. de Haan: A spectral representation for max-stable processes. Ann. Prob. **12**, 1194–1204 (1984)