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Abstract

A standardized max-stable process on C(S) with S a compact subset
of a Euclidean space has a simple representation involving a more or less
arbitrary stochastic process.
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1 Introduction

Max-stable processes form a useful tool to model extremal behaviour in e.g.
environmental processes like rainfall.

Probably the earliest example of a max-stable process has been given in
Brown and Resnick (1977): Let O1, 05, -+ be independent and identically dis-
tributed (i.i.d.) copies of the Ornstein-Uhlenbeck process. Consider the se-
quence of processes

(a0 = { V0 0 o) 00}

seR

where the maximum is taken pointwise and b,, = (2logn —loglogn —log4m)'/2.

Note that the b, are chosen such that the M, (0) has a non-degenerate limit
distribution. Then the sequence {M,(s)}ser converges in distribution in C(R)
to a process {1(s)}ser with the following structure. C'(R) denotes the space of
continuous functions on R.

Consider a Poisson point process on Ry with mean measure z~2dz. Let
{X;}32, be an enumeration of the points of a realization of the point process.
Also consider an i.i.d. sequence of Brownian motions {W;(s)}ser, independent
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of the point process, where W;(0) = 0 for all i = 1,2,... and the process goes
off in a symmetric way in both directions. Then

d > (s)—s
{n(s)}seR = {\/ Xier( )~ |/2} )
seR

i=1

We shall show that this structure - points of a Poisson point process marked
by i.i.d. stochastic processes - is valid for any simple max-stable process in C(S)
with S a compact subset of a Euclidean space. C(S) is the space of continuous
functions f on S equipped with the supremum norm |f|. = sup,cg |f(s)]-

2 Main result

Let £ be a stochastic process on C(S) with non-degenerate marginals, i.e. &(s)
is non-degenerate for all s € S. The process ¢ is max-stable if there exist
continuous functions a, > 0 and b, defined on S, such that if &, &, -+ , &, are
i.i.d. copies of &,

VE L e
i=1 an(s) seS

The probabilistic structure of those processes is fully captured, through a
transformation of the marginal distributions, by a corresponding simple max-
stable process. A stochastic process 7 in C(S) with non-degenerate marginals
is simple max-stable if, with 7,79, -- ,n, i.i.d. copies of 7,

{% \/ m(S)} 4 (n(s)}ses
i=1 s€S

and P{n(s) <1} = e ! for s € S. The first requirement determines the type of
the marginal distribution, the latter fixes the scale (cf. Giné, Hahn and Vatan
(1990)). We shall prove the following result.

Theorem 2.1. Let the process n be simple max-stable in C(S). Consider a
Poisson point process on (0,00) with mean measure dr/r*. Let {Z;}2°, be the
enumeration of the points of a realization of the point process. We can find i.i.d.
non-negative stochastic processes V,Vy, Vo, -+ in C(S) with

EV(s)=1, forse S,

EsupV(s) < o0 (1)
seS

such that
o0
U] 4 \/ Z;iVi .
=1



Conversely each process with this representation is simple mazx-stable.
The process V can be chosen is such a way that

supV(s) =c¢ a.s. (2)
seS

with ¢ some positive constant.
For the proof we use the following result by Giné, Hahn and Vatan (1990).

Proposition 2.1. Let n be a simple maz-stable process in C(S). There exists a
finite Borel measure p on C;7 :={f € C(S): f > 0,|f|ec = 1} with the property
that

f(s)dp(f) =1 for all s € S,
of

such that

oo
n = \/m
i=1

where {n;(s)}ses = {Zimi(s)}ses and (Z;,m;), i = 1,2,..., are the points of a
Poisson point process on (0, 00) X Cfr with mean measure r~2dr x dp.
Conversely each process with this representation is simple mazx-stable.

We also need the following auxiliary result.

Lemma 2.1. Suppose P is a Poisson point process on the product space S1 X Sa
with S1 and S metric spaces and the intensity measure is v = v; X vy where
vy 18 not bounded and vs is a probability measure. The process can be generated
in the following way: let {U;} be an enumeration of the points of the Poisson
point process on S1 with intensity measure vy and let Vi, Vs, ... be independent
and identically distributed random elements of So with probability distribution
vo. Then the counting measure N defined by

N(Al X AQ) = Z 1{(Ui,Vz‘)€A1 x Az}

i=1
for Borel sets A1 C S1, Ay C Sa, has the same distribution as the point process
P.

Proof. We need to prove that the number of points of the set {(U;, V;)}52; in
two disjoint Borel sets are independent (which is trivial) and that the number
of points N(A; x As) in a Borel set A1 x Ay, with A; C S; and Ay C S, has a



Poisson distribution with mean measure vy (A4;)v2(Az). Now
P( (Al X AQ) = k’)

= ZP (A1 x As) = k | the number of points in A; = r)

(1/1 (A1)" e (A1)

1"!

.- r—k (11 (A1))" —v1(Ar
= X e () (- () M )
_ (Al)kV!2 (AQ e~ Al)z V2 A2 (1/1 (Al))rfk
_ nA)w (A42))" =1 (A1)ra(A2)

k! '

O

Proof of Theorem 2.1. Let n be simple max-stable and {(Z;,m;)} the points of
the point process of Proposition 2.1. Let {(Z;,7;)} be the points of a Poisson
point process on (0,00) x C;" with mean measure

dr dp
+
P( 1)r2 Xp(Cf') .

Then the product measure remains the same and hence
Y A\ d
\/Zﬁu: \/Zmi:n.

Next consider the collection of points {(z, 7;)} defined for i = 1,2,... by

Zi= Zi/p(CT)
. C+
Then {(z,frl)} represents a Poisson point process on (0,00) x Cf with
Cr={f€C(S): f>0.[floc = p(C)}.
We now argue that its intensity measure is
r~2dr x dQ

with () a probability measure. The intensity measure of the first component is

dz dz
/ p(Ch) z=] =
{z:z/p(C’i")GA} Z AR



for a Borel set A of (0,00) . The intensity measure of the second component is

wo o 107)

which is a probability measure.

Application of the Lemma now provides the representation of the theorem
with V satisfying (2).

For the converse just follow the steps backwards.

It remains to prove that for the converse the requirement sup,.g V' (s) = ca.s.
can be relaxed to Esup,cg V(s) < oco. Checking the proof of the Proposition
in Giné, Hahn and Vatan (1990), one sees that their condition which in our
notation is sup,eg 7i(s) = p(C") for all 4, is used only to ensure the finiteness
of the process 7. But this also follows from our weaker assumption: we consider
now a probability measure () on the space

C*={feC(S): f>0,|fle >0}

with the property
[ () <o

Then

P oo <]

seS

= P{none of the points éﬁr,,z =1,2,..., isin the set {f : f > 0,|f]oo > x}}

exp |~ [[ SGaou)

[floo>2

exp (=3 [ 1l dan)) >0

Hence the process 1 is bounded. O

Remark 2.1. The result can also be expressed as a representation using a family
of (deterministic) spectral functions acting on a homogeneous Poisson process
on (0,00) % [0,1] as in de Haan (1984): there exist non-negative measurable
functions fs(u) where s € S, u € [0,1] with

i. for each u € [0,1] the function fs(u) is continuous in s,

1. for each s € S

1
/ fs(u)du =1,
0

1
/ sup fs(u)du < oo,
0

seS



such that .
()} ses = {\/ Xifs(Yi)}
i=1 seS

where {(X;,Y;)}i=, is an enumeration of the points of a Poisson point process
on (0,00) x [0, 1] with mean measure dr/r? x d\ (X is Lebesgue measure).

Corollary 2.1 (Sample behaviour). Consider the representation of Theorem
2.1 using the Poisson point process represented by {(Z;, V;)}52,. With probability
one there eists a finite collection {(Z;,V;)}5_, such that

k
d
n=\/2V;.
j=1

Proof. By Corollary 3.4 , Giné, Hahn and Vatan (1990),
P{n>0}=1.

Hence on a set of probability one we have both that 7 > 0 and that for all e > 0
there are only finitely many Z; with Z; > €. The result follows. O

Remark 2.2. Consider the stochastic process on a compact subset S of a Eu-
clidean space, defined by ( := YV whereY is a random variable with distribution
function 1 —1/z, x > 1 and V a continuous stochastic process satisfying (1).
Let (1, (o, . .. be i.i.d. copies of (. It is easy to see that n=' V| (; converges in
C(S) to a simple maz-stable process that has the representation of Theorem 2.1
with the same auziliary process V. Moreover for a > 1

{a71¢(s)C(0) > a}, g

has the same distribution as (. This property resembles a corresponding property
for generalized Pareto distributions in finite-dimensional space. Note that the
marginal distributions of this process are not Pareto: for x >0

P{C(s) > 2} = 2 /0 " PV(s) > uldu.
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