On the estimation of the probability of a failure set

Ana Ferreira, ISA, Universidade Técnica de Lisboa, Laurens de Haan, Erasmus Universiteit Rotterdam, Tao Lin, Xiamen University

August 10, 2005

Abstract

The theory of estimating the probability of a failure set (i.e. a set beyond the range of the available observations) is well-known (see e.g. Joe, Smith and Weissman (1992); Ledford and Tawn (1997); de Haan and Sinha (1999); Draisma, Drees, Ferreira and de Haan (2004)). In the literature the conditions imposed on the probability distribution and on the failure set are very complicated and not transparent. We present a new treatment that simplifies conditions and proofs (e.g. no more Vapnik-Cervonenkis classes). For simplicity in finite-dimensional space we consider the two-dimensional case. Generalization to higher dimensions is immediate. The method allows us to prove a similar result in functions space which is completely new.

Keywords and phrases: multivariate extreme value distribution; failure probability; estimation; infinite dimensional

1 Introduction and result in Euclidean space

Let (X,Y), (X_1,Y_1) , (X_2,Y_2) ,..., (X_n,Y_n) be i.i.d. random variables with distribution function F. Consider a failure set C which is outside the range of the observations in the north-eastern corner. One wants to estimate the probability that a future observation falls in the set C.

In order to formalize the situation we assume that the set C in fact depends on n ($C = C_n$) and that $P(C_n) = O(1/n)$, as $n \to \infty$.

Moreover we assume that there exists $(v_n, w_n) \in \partial C_n$ such that $(-\infty, v_n] \times (-\infty, w_n] \cap C_n = \emptyset$. Further one assumes that the distribution function F is in the domain of attraction of an extreme value distribution. Next we introduce an estimator $\hat{P}(C_n)$. The aim is to prove that $\hat{P}(C_n)/P(C_n) \stackrel{P}{\to} 1$

as $n \to \infty$. This has been achieved in Draisma, Drees, Ferreira and de Haan (2004), albeit under complicated conditions. We present a new approach and set out our conditions first.

1. F is in the domain of attraction of an extreme value distribution i.e. for functions $a_1, a_2 > 0$, b_1, b_2 and real parameters γ_1 and γ_2

$$\lim_{t \to \infty} tP \left\{ \left(\left(1 + \gamma_1 \frac{X - b_1(t)}{a_1(t)} \right)^{1/\gamma_1}, \left(1 + \gamma_2 \frac{Y - b_2(t)}{a_2(t)} \right)^{1/\gamma_2} \right) \in A \right\}$$

$$= \nu(A) \tag{1}$$

for each Borel set $A\subset [0,\infty)^2$ with $\inf_{(x,y)\in A}\max(x,y)>0$ and $\nu(\partial A)=0$ where ν is a measure on $[0,\infty)^2\setminus\{(0,0)\}$ which is homogeneous i.e. for a>0

$$\nu(aA) = a^{-1}\nu(A) \tag{2}$$

where aA is the set obtained by multiplying all elements of A by a.

2. We need estimators $\hat{\gamma}_1, \hat{\gamma}_2, \hat{a}_1\left(\frac{n}{k}\right), \hat{a}_2\left(\frac{n}{k}\right), \hat{b}_1\left(\frac{n}{k}\right), \hat{b}_2\left(\frac{n}{k}\right)$ such that for some sequence $k = k(n) \to \infty, k/n \to 0, n \to \infty$,

$$\sqrt{k}\left(\hat{\gamma}_i - \gamma_i, \frac{\hat{a}_i\left(\frac{n}{k}\right)}{a_i\left(\frac{n}{k}\right)} - 1, \frac{\hat{b}_i\left(\frac{n}{k}\right) - b_i\left(\frac{n}{k}\right)}{a_i\left(\frac{n}{k}\right)}\right) = (O_P(1), O_P(1), O_P(1))$$

for i = 1, 2. There are several known estimators with this behaviour under suitable second order extreme value conditions on F.

- 3. C_n is open and there exists $(v_n, w_n) \in \partial C_n$ such that $(-\infty, v_n] \times (-\infty, w_n] \cap C_n = \emptyset$.
- 4. The set

$$S := \left\{ \left(\frac{1}{c_n} \left(1 + \gamma_1 \frac{X - b_1 \left(\frac{n}{k} \right)}{a_1 \left(\frac{n}{k} \right)} \right)^{1/\gamma_1}, \frac{1}{c_n} \left(1 + \gamma_2 \frac{Y - b_2 \left(\frac{n}{k} \right)}{a_2 \left(\frac{n}{k} \right)} \right)^{1/\gamma_2} \right) : (X, Y) \in C_n \right\}$$

$$: (3)$$

2

in \mathbb{R}^2_+ does not depend on n where

$$c_n := \sqrt{q_n^2 + r_n^2}$$

$$q_n := \left(1 + \gamma_1 \frac{v_n - b_1\left(\frac{n}{k}\right)}{a_1\left(\frac{n}{k}\right)}\right)^{1/\gamma_1}$$

$$r_n := \left(1 + \gamma_2 \frac{w_n - b_2\left(\frac{n}{k}\right)}{a_2\left(\frac{n}{k}\right)}\right)^{1/\gamma_2}.$$

$$(4)$$

Further: S has positive distance from the origin and $\nu(\partial S) = 0$. Note that (3) implies that $(q_n/c_n, r_n/c_n) \in \partial S$. Hence q_n/r_n does not depend on n. We suppose $0 < q_n/r_n < \infty$. We require that $c_n \to \infty$, $n \to \infty$. Moreover (cf. Condition 1) as $n \to \infty$

$$P(C_n) = P\left\{ \left(1 + \gamma_1 \frac{X - b_1\left(\frac{n}{k}\right)}{a_1\left(\frac{n}{k}\right)} \right)^{1/\gamma_1}, \left(1 + \gamma_2 \frac{Y - b_2\left(\frac{n}{k}\right)}{a_2\left(\frac{n}{k}\right)} \right)^{1/\gamma_2} \in c_n S \right\}$$

$$\sim \frac{k}{n} \nu(c_n S) = \frac{k}{nc_n} \nu(S) .$$

This can be guaranteed by a proper second order condition on the probability distribution.

5.
$$\gamma_1, \gamma_2 > -1/2$$
 and

$$\lim_{n \to \infty} \frac{w_{\gamma_1 \wedge \gamma_2}(c_n)}{\sqrt{k}} = 0$$

where

$$w_{\gamma}(x) := x^{-\gamma} \int_{1}^{x} s^{\gamma - 1} \log s \ ds \ .$$

Write $p_n := P(C_n)$. Our estimator \hat{p}_n for p_n is more or less the traditional one.

Define (with the convention $0^{1/\hat{\gamma}_i} = 0$ regardless the sign of $\hat{\gamma}_i$)

$$\hat{q}_n := \left(1 + \hat{\gamma}_1 \frac{v_n - \hat{b}_1\left(\frac{n}{k}\right)}{\hat{a}_1\left(\frac{n}{k}\right)}\right)^{1/\hat{\gamma}_1}$$

$$\hat{r}_n := \left(1 + \hat{\gamma}_2 \frac{w_n - \hat{b}_2\left(\frac{n}{k}\right)}{\hat{a}_2\left(\frac{n}{k}\right)}\right)^{1/\hat{\gamma}_2}$$

$$\hat{c}_n := \sqrt{\hat{q}_n^2 + \hat{r}_n^2}$$

$$(5)$$

and

$$\hat{S}_{n} := \left\{ \left(\frac{1}{\hat{c}_{n}} \left(1 + \hat{\gamma}_{1} \frac{x + \hat{b}_{1} \left(\frac{n}{k} \right)}{\hat{a}_{1} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{1}}, \frac{1}{\hat{c}_{n}} \left(1 + \hat{\gamma}_{2} \frac{y - \hat{b}_{2} \left(\frac{n}{k} \right)}{\hat{a}_{2} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{2}} \right) : (x, y) \in C_{n} \right\}.$$

$$(6)$$

Then we define

$$\hat{p}_{n} := \frac{1}{n\hat{c}_{n}} \sum_{i=1}^{n} 1_{\left\{ \left(\left(1 + \hat{\gamma}_{1} \frac{X_{i} + \hat{b}_{1} \left(\frac{n}{k} \right)}{\hat{a}_{1} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{1}}, \left(1 + \hat{\gamma}_{2} \frac{Y_{i} - \hat{b}_{2} \left(\frac{n}{k} \right)}{\hat{a}_{2} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{2}} \right) \in \hat{S}_{n} \right\}}$$
(7)

We shall prove

Theorem 1.1. Under Conditions 1-5 with \hat{p}_n as in (7)

$$\frac{\hat{p}_n}{p_n} \stackrel{P}{\to} 1$$

as $n \to \infty$, provided $\nu(S) > 0$.

Remark 1.1. The condition $\nu(S) > 0$ can be violated under asymptotic independence in (1). In that case a similar statement with similar proof applies under the Ledford and Tawn (1997) condition. We omit the details.

Remark 1.2. Note that $\hat{q}_n, \hat{r}_n, \hat{S}_n, \hat{p}_n$ may not be defined if $1 + \hat{\gamma}_1(X_i - \hat{b}_1(n/k))/\hat{a}_1(n/k) \leq 0$ for some X_i and similarly with the second component. However when checking the proofs one sees that when $n \to \infty$, the probability that this happens tends to zero.

2 Proof of Theorem 1.1

The proof of the Theorem will follow from three analytical lemmas and four propositions.

Lemma 2.1. Let $f_n(x)$ and $g_n(x)$ be strictly increasing continuous functions for all n, $\lim_{n\to\infty} f_n(x) = x$ and $\lim_{n\to\infty} g_n(x) = x$ for x > 0. For an open set O let

$$O_n := \{ f_n(x), g_n(y) : (x, y) \in O \}.$$

Then

$$1_{O_n}(x,y) := 1_{\{(x,y) \in O_n\}} \to 1_O(x,y) := 1_{\{(x,y) \in O\}}$$

for $(x,y) \in O$.

Proof. Take $(x, y) \in O$ and $\varepsilon > 0$ such that $(x - \varepsilon, y - \varepsilon) \in O$. For $n \ge n_0$ we have $f_n^{\leftarrow}(x) > x - \varepsilon$ and $g_n^{\leftarrow}(y) > y - \varepsilon$. Hence $(f_n^{\leftarrow}(x), g_n^{\leftarrow}(y)) \in O$ for $n \ge n_0$. It follows that

$$1_O\left(f_n^{\leftarrow}(x), g_n^{\leftarrow}(y)\right) \to 1$$

for $(x,y) \in O$. Now

$$(x,y) \in O_n \Leftrightarrow (f_n^{\leftarrow}(x), g_n^{\leftarrow}(y)) \in O \Leftrightarrow 1_O(f_n^{\leftarrow}(x), g_n^{\leftarrow}(y)) = 1.$$

Hence the conclusion.

Lemma 2.2. For all real γ and x > 0

$$\lim_{n \to \infty} \left(1 + \gamma \left\{ (1 + o_1(1)) \frac{x^{\gamma + o_2(1)} - 1}{\gamma + o_2(1)} + o_3(1) \right\} \right)^{1/\gamma} = x$$

where the three o_i -terms are not necessarily the same.

Lemma 2.3. For all real γ and x > 0, with $\gamma_n \to \gamma$ and $c_n \to \infty (n \to \infty)$,

$$\lim_{n \to \infty} \frac{1}{c_n} \left(1 + \gamma_n \left\{ (1 + O_1(\gamma_n - \gamma)) \frac{(c_n x)^{\gamma} - 1}{\gamma} + O_2(\gamma_n - \gamma) \right\} \right)^{1/\gamma_n} = x$$

provided

$$\lim_{n \to \infty} (\gamma_n - \gamma) c_n^{-\gamma} \int_1^{c_n} s^{\gamma - 1} \log s \, ds = 0.$$
 (8)

Proof. For $\gamma \neq 0$ the left hand side can be written as

$$\frac{1}{c_n} \left[(c_n x)^{\gamma} + (c_n x)^{\gamma} O_1(\gamma_n - \gamma) + O_2(\gamma_n - \gamma) \right]^{1/\gamma_n}$$

$$= \frac{(c_n x)^{\gamma/\gamma_n}}{c_n} \left[1 + O_1(\gamma_n - \gamma) + (c_n x)^{-\gamma} O_2(\gamma_n - \gamma) \right]^{1/\gamma_n}.$$

We deal with the two factors separately. Note that (8) implies

$$\begin{cases} (\gamma_n - \gamma) \log c_n \to 0 & \text{, if } \gamma > 0 \\ (\gamma_n - \gamma) c_n^{-\gamma} \to 0 & \text{, if } \gamma < 0 \end{cases},$$

hence whatever the value of $\gamma \neq 0$

$$(\gamma_n - \gamma)c_n^{-\gamma} \to 0$$
 and $(\gamma_n - \gamma)\log c_n \to 0$, $n \to \infty$.

The result follows for $\gamma \neq 0$.

Next consider $\gamma = 0$. We prove that the inverse function of the left hand side converges to the identity:

$$\frac{1}{c_n} \exp\left[\left(1 + O_1(\gamma_n - \gamma) \right) \frac{(c_n x)^{\gamma_n} - 1}{\gamma_n} + O_2(\gamma_n - \gamma) \right]
= x \exp\left[\left(1 + O_1(\gamma_n - \gamma) \right) \left(\frac{(c_n x)^{\gamma_n} - 1}{\gamma_n} - \log c_n x \right) \right]
+ O_1(\gamma_n - \gamma) \log(c_n x) + O_2(\gamma_n - \gamma) .$$

Now note that

$$\left| \frac{(c_n x)^{\gamma_n} - 1}{\gamma_n} - \log(c_n x) \right|$$

$$= \left| \gamma_n \int_1^{c_n x} \int_1^s u^{\gamma_n} \frac{du}{u} \frac{ds}{s} \right| \le |\gamma_n| \left(c_n x \right)^{|\gamma_n|} \frac{1}{2} \log^2(c_n x)$$

The proof is completed by noting that (8) implies $\gamma_n \log^2 c_n \to 0, n \to \infty$, if $\gamma = 0$.

Next we introduce some transformations.

$$R_{n}(x,y) := \left(\left(1 + \gamma_{1} \frac{x - b_{1} \left(\frac{n}{k} \right)}{a_{1} \left(\frac{n}{k} \right)} \right)^{1/\gamma_{1}}, \left(1 + \gamma_{2} \frac{y - b_{2} \left(\frac{n}{k} \right)}{a_{2} \left(\frac{n}{k} \right)} \right)^{1/\gamma_{2}} \right)$$

$$\hat{R}_{n}(x,y) := \left(\left(1 + \hat{\gamma}_{1} \frac{x - \hat{b}_{1} \left(\frac{n}{k} \right)}{\hat{a}_{1} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{1}}, \left(1 + \hat{\gamma}_{2} \frac{y - \hat{b}_{2} \left(\frac{n}{k} \right)}{\hat{a}_{2} \left(\frac{n}{k} \right)} \right)^{1/\hat{\gamma}_{2}} \right)$$

$$Q_{n}(x,y) := \frac{1}{c_{n}} R_{n}(x,y)$$

$$\hat{Q}_{n}(x,y) := \frac{1}{\hat{c}_{n}} \hat{R}_{n}(x,y) .$$

Proposition 2.1. Let S be an open Borel set in \mathbb{R}^2_+ with $\nu(S) > 0$, $\nu(\partial S) = 0$ and with positive distance from the origin. Suppose Condition 1 holds. Define

$$\tilde{\nu}_{n}(S) := \frac{1}{k} \sum_{i=1}^{n} 1_{\left\{ \left(\left(1 + \gamma_{1} \frac{X_{i} - b_{1}\left(\frac{n}{k}\right)}{a_{1}\left(\frac{n}{k}\right)} \right)^{1/\gamma_{1}}, \left(1 + \gamma_{2} \frac{Y_{i} - b_{2}\left(\frac{n}{k}\right)}{a_{2}\left(\frac{n}{k}\right)} \right)^{1/\gamma_{2}} \right) \in S \right\} \\
= \frac{1}{k} \sum_{i=1}^{n} 1_{\left\{ R_{n}(X_{i}, Y_{i}) \in S \right\}}.$$

Then with k satisfying $k = k(n) \to \infty$, $k/n \to 0$, as $n \to \infty$,

$$\tilde{\nu}_n(S) \stackrel{P}{\to} \nu(S)$$
.

Proof. By Condition 1 we find easily

$$\lim_{n \to \infty} E e^{it \, \tilde{\nu}_n(S)} = e^{it \, \nu(S)}$$

for all t.

Proposition 2.2. Let S be as in Proposition 2.1. Suppose that Condition 1 holds and there are estimators $(\hat{\gamma}_i, \hat{a}_i(n/k), \hat{b}_i(n/k))$ such that

$$\left(\hat{\gamma}_i - \gamma, \frac{\hat{a}_i\left(\frac{n}{k}\right)}{a_i\left(\frac{n}{k}\right)} - 1, \frac{\hat{b}_i\left(\frac{n}{k}\right) - b_i\left(\frac{n}{k}\right)}{a_i\left(\frac{n}{k}\right)}\right) \xrightarrow{P} (0, 0, 0) \tag{9}$$

for i = 1, 2 as $n \to \infty$ (the latter follows from Condition 2). Define

$$\begin{split} \hat{\nu}_n(S) &:= \frac{1}{k} \sum_{i=1}^n \mathbb{1}_{\left\{ \left(\left(1 + \hat{\gamma}_1 \frac{X_i - \hat{b}_1\left(\frac{n}{k}\right)}{\hat{a}_1\left(\frac{n}{k}\right)} \right)^{1/\hat{\gamma}_1}, \left(1 + \hat{\gamma}_2 \frac{Y_i - \hat{b}_2\left(\frac{n}{k}\right)}{\hat{a}_2\left(\frac{n}{k}\right)} \right)^{1/\hat{\gamma}_2} \right) \in S \right\} \\ &= \frac{1}{k} \sum_{i=1}^n \mathbb{1}_{\left\{ \hat{R}_n(X, Y) \in S \right\}} \,. \end{split}$$

Then as $n \to \infty$

$$\hat{\nu}_n(S) \stackrel{P}{\to} \nu(S)$$
.

Proof. First invoke a Skorohod construction so that we may pretend that the left hand side of (9) converges to zero almost surely and that $\tilde{\nu}_n(S) \to \nu(S)$ almost surely. Note that

$$\hat{\nu}_{n}(S) = \frac{1}{k} \sum_{i=1}^{n} 1_{\{(X,Y) \in \hat{R}_{n}^{\leftarrow}(S)\}}$$

$$= \frac{1}{k} \sum_{i=1}^{n} 1_{\{R_{n}(X,Y) \in R_{n} \ \hat{R}_{n}^{\leftarrow}(S)\}}$$

$$= \tilde{\nu}(S_{n})$$

with

$$S_n := R_n \; \hat{R}_n^{\leftarrow}(S) = \left\{ R_n \; \hat{R}_n^{\leftarrow}(x, y) : (x, y) \in S \right\} \; .$$

Now

$$R_{n} \hat{R}_{n}^{\leftarrow}(x,y) = \left(\left(1 + \gamma_{1} \left[\frac{\hat{a}_{1} \left(\frac{n}{k} \right)}{a_{1} \left(\frac{n}{k} \right)} \frac{x^{\hat{\gamma}_{1}} - 1}{\hat{\gamma}_{1}} + \frac{\hat{b}_{1} \left(\frac{n}{k} \right) - b_{1} \left(\frac{n}{k} \right)}{a_{1} \left(\frac{n}{k} \right)} \right] \right)^{1/\gamma_{1}},$$

$$, \left(1 + \gamma_{2} \left[\frac{\hat{a}_{2} \left(\frac{n}{k} \right)}{a_{2} \left(\frac{n}{k} \right)} \frac{y^{\hat{\gamma}_{2}} - 1}{\hat{\gamma}_{2}} - \frac{\hat{b}_{2} \left(\frac{n}{k} \right) - b_{2} \left(\frac{n}{k} \right)}{a_{2} \left(\frac{n}{k} \right)} \right] \right)^{1/\gamma_{2}} \right),$$

hence we have by Lemma 2.2

$$R_n \hat{R}_n^{\leftarrow}(x, y) \to (x, y)$$
 (10)

for x, y > 0 a.s. and hence by Lemma 2.1

$$1_{R_n \hat{R}_n^{\leftarrow}(S)}(x, y) \to 1_S(x, y)$$
 (11)

for all $(x, y) \in S$ a.s.

Further since S has positive distance to the origin, there are s>0 such that

$$S \subset \{(x,y): x>s \quad \text{or} \quad y>s\} =: D$$
.

Define for $0 < \varepsilon < s$

$$D_{\varepsilon} := \{(x - \varepsilon, y - \varepsilon) : (x, y) \in D\}$$
.

and $(f_n(x), g_n(x)) := R_n \hat{R}_n^{\leftarrow}(x, y)$. By Lemma 2.1 for $n \geq n_0$

$$f_n(s) > s - \varepsilon$$
 and $g_n(s) > s - \varepsilon$.

Since $S \subset D$, $(x,y) \in S$ implies x > s or y > s hence $f_n(x) > f_n(s)$ or $g_n(y) > g_n(s)$. It follows that for $n \ge n_0$

$$\{(f_n(x), g_n(y)) : (x, y) \in S\} \subset ((-\infty, f_n(s)] \times (-\infty, g_n(s)])^c$$
$$\subset ((-\infty, s - \varepsilon] \times (-\infty, s - \varepsilon])^c = D_\varepsilon,$$

i.e.

$$1_{R_n \hat{R}_n^{\leftarrow}(S)} \le 1_{D_{\varepsilon}} . \tag{12}$$

Next define the measure ν^* by

$$\nu^{\star} := \sum_{n=0}^{\infty} 2^{-n} \tilde{\nu}_n$$

with the convention that $\tilde{\nu}_0 := \nu$. Let h_n be the density of $\tilde{\nu}_n$ with respect to ν^* . We know from Proposition 2.1

$$\int_{S} h_n d\nu^* = \tilde{\nu}_n(S) \to \nu(S) = \int_{S} h_0 d\nu^* \quad \text{a.s.}$$
 (13)

Finally from Lemma 2.1, Proposition 2.1, (12), (13) and Pratt's (1960) lemma

$$\hat{\nu}(S) = \tilde{\nu}_n \left(R_n \ \hat{R}_n^{\leftarrow}(S) \right) = \int 1_{S_n} h_n d\nu^* \to \int 1_S h_0 d\nu^* = \nu(S)$$

a.s. hence in probability.

Proposition 2.3. Under the conditions of the theorem

$$\frac{\hat{c}_n}{c_n} \stackrel{P}{\to} 1 \quad as \quad n \to \infty \ .$$

Proof. Recall $c_n = \sqrt{q_n^2 + r_n^2}$ and $\hat{c}_n = \sqrt{\hat{q}_n^2 + \hat{r}_n^2}$. Now by (4) and (5)

$$\hat{q}_n := \left(1 + \hat{\gamma}_1 \frac{v_n - \hat{b}_1\left(\frac{n}{k}\right)}{\hat{a}_1\left(\frac{n}{k}\right)}\right)^{1/\hat{\gamma}_1} \\
= \left(1 + \hat{\gamma}_1 \left\{\frac{a_1\left(\frac{n}{k}\right)}{\hat{a}_1\left(\frac{n}{k}\right)} \frac{q_n^{\hat{\gamma}_1} - 1}{\gamma_1} + \frac{b_1\left(\frac{n}{k}\right) - \hat{b}_1\left(\frac{n}{k}\right)}{\hat{a}_1\left(\frac{n}{k}\right)}\right\}\right)^{1/\hat{\gamma}_1}.$$

Then from Lemma 3.1

$$\frac{\hat{q}_n}{q_n} \stackrel{P}{\to} 1 \ .$$

Similarly

$$\frac{\hat{r}_n}{r_n} \stackrel{P}{\to} 1 .$$

The results follows.

Proposition 2.4. Under the conditions of the theorem

$$\hat{\nu}_n\left(\hat{Q}_n\ Q_n^{\leftarrow}(S)\right) \stackrel{P}{\to} \nu(S) \ .$$

Proof. Invoke a Skorohod construction so that we may pretend that (cf. Condition 2)

$$\hat{\nu}_n(S) \to \nu(S) , \frac{\hat{c}_n}{c_n} \to 1 ,$$

$$\sqrt{k} \left(\hat{\gamma}_1 - \gamma_i, \frac{\hat{a}_i \left(\frac{n}{k} \right)}{a_i \left(\frac{n}{k} \right)} - 1, \frac{\hat{b}_i \left(\frac{n}{k} \right) - b_i \left(\frac{n}{k} \right)}{a_i \left(\frac{n}{k} \right)} \right) = (O(1), O(1), O(1))$$

for i = 1, 2 as $n \to \infty$ almost surely. Then by Lemma 3.1

$$\hat{Q}_n \ Q_n^{\leftarrow}((x,y)) \to ((x,y))$$

for all $(x,y) \in (0,\infty)^2$ a.s. Then from Lemma 2.1

$$1_{\hat{Q}_n \ Q_n^{\leftarrow}(S)}((x,y)) \to 1_S((x,y))$$

for all $(x, y) \in S$ almost surely. The rest of the proof is similar to that of Proposition 2.2.

Proof. (of Theorem 1.1)

We have by Condition 4 as $n \to \infty$

$$p_n = P(C_n) \sim \frac{k}{nc_n} \nu(S)$$
.

Hence by Proposition 2.3 and Proposition 2.4

$$\frac{\hat{p}_n}{p_n} = \frac{k \; \hat{\nu}_n \left(\hat{Q}_n \; Q_n^{\leftarrow}(S) \right)}{n \; \hat{c}_n \; p_n} \sim \frac{\hat{\nu}_n \left(\hat{Q}_n \; Q_n^{\leftarrow}(S) \right)}{\nu(S)} \frac{c_n}{\hat{c}_n} \stackrel{P}{\to} 1 \; .$$

3 Result in function space

Example: During surgery the blood pressure of the patient is monitored continuously. It should not go below a certain level and in fact this has never happened in previous similar operations. What is the probability that this happens during surgery of a certain kind?

First a short reminder of extreme value theory in C[0,1] (cf. de Haan and Lin (2001, 2003); Einmahl and Lin (2003)). It is quite similar to the finite-dimensional case. Let X, X_1, X_2, \ldots be i.i.d. continuous stochastic processes on [0,1]. We define the maximum of n such processes M_n as an element of C[0,1]:

$$M_n(s) := \max_{1 \le i \le n} X_i(s) \text{ for } 0 \le s \le 1.$$

We consider possible limit distributions of M_n , linearly normalized, as $n \to \infty$. The limit distribution is characterized by two elements: a function $\gamma \in C[0,1]$, the extreme value index function, and a measure ν which is homogeneous of order -1. Write

$$|f| := \sup \{ f(s) : s \in [0,1] \}$$
.

The domain of attraction condition is: for each Borel set

$$A \subset \{ f \in C[0,1] : f \ge 0 \}$$

with

$$\nu(\partial A) = 0 , \inf\{|f| : f \in A\} > 0 ,$$
$$\lim_{n \to \infty} \frac{n}{k} P\{R_n X \in A\} = \nu(A)$$

for some $k = k(n) \to \infty$, $k/n \to 0$, where for $0 \le s \le 1$

$$R_n X(s) := \left(1 + \gamma(s) \frac{X(s) - b_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)}\right)^{1/\gamma(s)}.$$

The functions $a_s(n/k) > 0$ and $b_s(n/k)$ are suitable continuous normalizing functions.

Next we suppose that we have a failure set C_n with $P_X(C_n) = O(1/n)$ and a sample $X_1, X_2, \ldots, X_n \in C[0, 1]$. We want to estimate $P_X(C_n)$.

Our conditions are quite similar to those in Section 1:

1. The domain of attraction condition.

2. Estimators $\hat{\gamma}(s)$, $\hat{a}_s(n/k)$, $\hat{b}_s(n/k)$ such that with some sequence k=1 $k(n) \to \infty, \ k(n) = o(n), n \to \infty,$

$$\sup_{0 \le s \le 1} \left(\sqrt{k} \left| \hat{\gamma}(s) - \gamma(s) \right| \bigvee \sqrt{k} \left| \frac{\hat{a}_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)} - 1 \right| \bigvee \sqrt{k} \left| \frac{\hat{b}_s\left(\frac{n}{k}\right) - b_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)} \right| \right) = O_P(1) .$$

3. C_n is open in C[0,1] and there exists $h_n \in \partial C_n$ such that

$$f \leq h_n \Rightarrow f \not\in C_n$$
.

4. (Stability property) We require

$$C_n = \left\{ \left(a_s \left(\frac{n}{k} \right) \frac{(c_n f(s))^{\gamma(s)} - 1}{\gamma(s)} + b_s \left(\frac{n}{k} \right) \right)_{s \in [0,1]} : f \in S \right\}$$

where S is a fixed set in C[0,1] with

- $f \ge 0$ for $f \in S$ $\nu(\partial S) = 0$ and $\inf\{|f| : f \in S\} > 0$

$$c_n := \sup_{0 \le s \le 1} \left(1 + \gamma(s) \frac{h_n(s) - b_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)} \right)^{1/\gamma(s)} .$$

5. Sharpening of Condition 1:

$$\frac{n P \{R_n(X) \in c_n S\}}{k\nu\{c_n S\}} \stackrel{P}{\to} 1.$$

6. With $\underline{\gamma} := \inf_{0 \le s \le 1} \gamma(s)$:

$$\underline{\gamma} > -\frac{1}{2}$$

and

$$\lim_{n \to \infty} \frac{w_{\underline{\gamma}}(c_n)}{\sqrt{k}} = 0 .$$

Finally we define the estimator \hat{p}_n for $p_n := P\{C_n\}$:

$$\hat{p}_n := \frac{1}{n \ \hat{c}_n} \sum_{i=1}^n 1_{\{\hat{R}_n(X) \in \hat{S}_n\}}$$

where

$$\hat{c}_n := \sup_{0 \le s \le 1} \left(1 + \hat{\gamma}(s) \frac{h_n(s) - \hat{b}_s\left(\frac{n}{k}\right)}{\hat{a}_s\left(\frac{n}{k}\right)} \right)^{1/\hat{\gamma}(s)} ,$$

$$\hat{R}_n f(s) := \left(1 + \hat{\gamma}(s) \frac{f(s) - \hat{b}_s\left(\frac{n}{k}\right)}{\hat{a}_s\left(\frac{n}{k}\right)} \right)^{1/\hat{\gamma}(s)} \text{ for } 0 \le s \le 1$$

and

$$\hat{S}_n := \frac{1}{\hat{c}_n} \hat{R}_n(C_n) \ .$$

Remark 3.1. Note that \hat{c}_n is not defined if

$$1 + \hat{\gamma}(s) \frac{h_n(s) - \hat{b}_s\left(\frac{n}{k}\right)}{\hat{a}_s\left(\frac{n}{k}\right)} \le 0$$

for some $s \in [0,1]$. However when checking the proof one sees that when $n \to \infty$, the probability that this happens tends to zero.

Theorem 3.1. Under our conditions

$$\frac{\hat{p}_n}{p_n} \stackrel{P}{\to} 1$$

as $n \to \infty$ provided $\nu(S) > 0$.

The proof of Theorem 3.1 follows from three lemmas and four propositions. The proofs are very similar to the ones in Section 2 and will be mostly omitted.

Lemma 3.1. Let G_n be an increasing and invertible mapping: $C[0,1] \to C[0,1]$. Suppose that $\lim_{n\to\infty} G_n f = f$ in C[0,1] for all $f\in C[0,1]$. For an open set O let

$$O_n := \{G_n f : f \in O\} .$$

Then for all $f \in O$

$$1_{O_n}(f) := 1_{\{f \in O_n\}} \to 1_O(f) := 1_{\{f \in O\}}$$
.

Lemma 3.2. For all x > 0

$$\lim_{n\to\infty} \left(1+\gamma(s)\left\{ (1+o_1(1)) \frac{x^{\gamma(s)+o_2(1)}-1}{\gamma(s)+o_2(1)} + o_3(1) \right\} \right)^{1/\gamma(s)} = x ,$$

uniformly for $0 \le s \le 1$, provided γ is a continuous function on [0,1] and the o-terms tend to zero uniformly in s.

Lemma 3.3. For all x > 0 and $c_n \to \infty$

$$\lim_{n \to \infty} \frac{1}{c_n} \left(1 + \gamma_n(s) \left\{ (1 + O_1 (\gamma_n(s) - \gamma(s))) \frac{(c_n x)^{\gamma(s)} - 1}{\gamma(s)} + O_2 (\gamma_n(s) - \gamma(s)) \right\} \right)^{1/\gamma_n(s)} = x ,$$

uniformly for $0 \le s \le 1$, provided γ_n and γ are continuous functions,

$$\sup_{0 \le s \le 1} |\gamma_n(s) - \gamma(s)| = 0$$

and

$$\lim_{n \to \infty} \sup_{0 < s < 1} |\gamma_n(s) - \gamma(s)| \, c_n^{-\gamma(s)} \int_1^{c_n} s^{\gamma(s) - 1} \log s \, \, ds = 0 \, .$$

Proposition 3.1. Let S be an open Borel set in $\{f \in C[0,1] : f \geq 0\}$ with $\nu(S) > 0, \nu(\partial S) = 0$ and such that

$$\inf\{|f|: f \in S\} > 0$$
.

Suppose Condition 1 holds. Define

$$\tilde{\nu}_n(S) := \frac{1}{k} \sum_{i=1}^n 1_{\{R_n X \in S\}} .$$

Then as $n \to \infty$

$$\tilde{\nu}_n(S) \stackrel{P}{\to} \nu_n(S)$$
.

Proposition 3.2. Assume the conditions of Proposition 3.1. Let $\hat{\gamma}(s)$, $\hat{a}_s(n/k)$, $\hat{b}_s(n/k)$ be estimators such that

$$\sup_{0 \le s \le 1} |\hat{\gamma}(s) - \gamma(s)| \xrightarrow{P} 0$$

$$\sup_{0 \le s \le 1} \left| \frac{\hat{a}_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)} - 1 \right| \xrightarrow{P} 0$$

$$\sup_{0 \le s \le 1} \left| \frac{\hat{b}_s\left(\frac{n}{k}\right) - b_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)} \right| \xrightarrow{P} 0.$$

Define

$$\hat{\nu}_n(S) := \frac{1}{k} \sum_{i=1}^n 1_{\{\hat{R}_n X \in S\}} .$$

Then as $n \to \infty$

$$\hat{\nu}_n(S) \stackrel{P}{\to} \nu(S)$$
.

Proof. Invoke a Skorohod construction so that we may assume that in virtue of Lemma 3.2

$$R_n \hat{R}_n^{\leftarrow} \to \text{ Identity} \quad \text{a.s.}$$

Write

$$c := \inf\{|f| : f \in S\} > 0$$
.

For all $0 < c_0 < c$ it holds that $f \in S \Rightarrow$ there exists a $s \in [0,1]$ such that $f(s) > c_0$.

Take n_0 such that for $n \ge n_0$

$$R_n \hat{R}_n^{\leftarrow} c_0 > \frac{c_0}{2} .$$

Then for each $f \in S$ there exists $s \in [0,1]$ such that

$$R_n \hat{R}_n^{\leftarrow} f(s) > R_n \hat{R}_n^{\leftarrow} c_0 > \frac{c_0}{2}$$
.

Hence

$$\begin{split} \left\{ R_n \hat{R}_n^{\leftarrow} f : f \in S \right\} &\subset \left\{ f : f \leq R_n \hat{R}_n^{\leftarrow} c_0 \right\}^c \\ &\subset \left\{ f : f \leq \frac{c_0}{2} \right\}^c =: D_{\varepsilon} \;, \end{split}$$

i.e.

$$1_{R_n \hat{R}_n^{\leftarrow}(S)} \le 1_{D_{\varepsilon}} .$$

Now

$$\tilde{\nu}_n(D_{\varepsilon}) \to \nu(D_{\varepsilon})$$

by Proposition 3.1. Hence as in the proof of Proposition 2.2

$$\tilde{\nu}_n\left(R_n\hat{R}_n^{\leftarrow}(S)\right) \to \nu(S)$$

almost surely hence in probability.

Proposition 3.3. Under the conditions of the theorem

$$\frac{\hat{c}_n}{c_n} \stackrel{P}{\to} 1$$

as $n \to \infty$.

Proof. Write for $0 \le s \le 1$

$$r_n(s) := \left(1 + \gamma(s) \frac{h_n(s) - b_s\left(\frac{n}{k}\right)}{a_s\left(\frac{n}{k}\right)}\right)^{1/\gamma(s)}.$$

Then

$$\hat{c}_{n} = \sup_{0 \leq s \leq 1} \left(1 + \hat{\gamma}(s) \frac{h_{n}(s) - \hat{b}_{s}\left(\frac{n}{k}\right)}{\hat{a}_{s}\left(\frac{n}{k}\right)} \right)^{1/\hat{\gamma}(s)}$$

$$= \sup_{0 \leq s \leq 1} r_{n}(s) \left\{ \frac{1}{r_{n}(s)} \left(1 + \hat{\gamma}(s) \left[\frac{a_{s}\left(\frac{n}{k}\right)}{\hat{a}_{s}\left(\frac{n}{k}\right)} \frac{(r_{n}(s))^{\gamma(s)} - 1}{\gamma(s)} + \frac{b_{s}\left(\frac{n}{k}\right) - \hat{b}_{s}\left(\frac{n}{k}\right)}{\hat{a}_{s}\left(\frac{n}{k}\right)} \right] \right)^{1/\hat{\gamma}(s)} \right\}.$$

Hence, since the expression inside the curly brackets tends to one in probability uniformly in s by Lemma 3.3, we have

$$\frac{\hat{c}_n}{c_n} = \frac{\hat{c}_n}{\sup_{0 < s < 1} r_n(s)} \stackrel{P}{\to} 1.$$

Proposition 3.4. Under the conditions of the theorem

$$\hat{\nu}_n \left(\frac{1}{\hat{c}_n} \hat{R}_n \ R_n^{\leftarrow}(c_n S) \right) \stackrel{P}{\to} \nu_n(S) \ .$$

Acknowledgement: A. Ferreira and L. de Haan were partially supported by FCT/POCTI/FEDER. L. de Haan was partially supported by Fundação Calouste Gulbenkian.

References

- [1] G. Draisma, H. Drees, A. Ferreira and L. de Haan. Bivariate tail estimation: dependence in asymptotic independence. Bernoulli 10, 2004, 251-280.
- [2] J.H.J. Einmahl and T. Lin. Asymptotic normality of extreme value estimators on C[0,1]. Submitted, 2003.

- [3] L. de Haan and T. Lin. On convergeance towards an extreme value distribution in C[0,1]. Ann. Probab. 29, 2001, 467-483.
- [4] L. de Haan and T. Lin. Weak consistency of extreme value estimators in C[0,1]. Ann. Statist. 31, 2003, 1996-2012.
- [5] L. de Haan and A.K. Sinha. Estimating the probability of a rare event. Ann. Statist. 27, 1999, 732-759
- [6] H. Joe, R.L. Smith and I. Weissman. Bivariate threshold methods for extremes. J.R. Statist. Soc. B 54, 1992, 171-183.
- [7] A. Ledford and J.A. Tawn. Modelling dependence within joint tail regions. J.R. Statist. Soc. B 59, 1997, 475-499.
- [8] J. Pratt. On interchanging limits and integrals. Ann. Math. Stat. 31, 1960, 74-77.