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Abstract

The theory of estimating the probability of a failure set (i.e. a set
beyond the range of the available observations) is well-known (see e.g.
Joe, Smith and Weissman (1992); Ledford and Tawn (1997); de Haan
and Sinha (1999); Draisma, Drees, Ferreira and de Haan (2004)). In
the literature the conditions imposed on the probability distribution
and on the failure set are very complicated and not transparent. We
present a new treatment that simplifies conditions and proofs (e.g. no
more Vapnik-Cervonenkis classes). For simplicity in finite-dimensional
space we consider the two-dimensional case. Generalization to higher
dimensions is immediate. The method allows us to prove a similar
result in functions space which is completely new.

Keywords and phrases: multivariate extreme value distribution; failure prob-
ability; estimation; infinite dimensional

1 Introduction and result in Euclidean space

Let (X,Y), (X1,Y1),(X2,Y2),...,(Xp,Ys) be i.id. random variables with
distribution function F'. Consider a failure set C' which is outside the range
of the observations in the north-eastern corner. One wants to estimate the
probability that a future observation falls in the set C.

In order to formalize the situation we assume that the set C in fact
depends on n (C = C,) and that P(C,) = O(1/n), as n — oc.

Moreover we assume that there exists (v, wy,) € 9C), such that (—oo, v,]x
(—oo,wp] N Cy, = (. Further one assumes that the distribution function F
is in the domain of attraction of an extreme value distribution. Next we
introduce an estimator P(C,,). The aim is to prove that P(Cn)/P(Cn) 51



as n — oo. This has been achieved in Draisma, Drees, Ferreira and de Haan
(2004), albeit under complicated conditions. We present a new approach
and set out our conditions first.

1. F' is in the domain of attraction of an extreme value distribution i.e.
for functions ay,as > 0, b1, by and real parameters y; and yo

. X —bi(1) 1/m Y — by(t) /72
tlirgotp{<<1+’le(t)) ,<1+’)’2T(t)) cA
=v(A)
(1)

for each Borel set A C [0,00)? with inf, e 4 max(z,y) > 0 and
v(0A) = 0 where v is a measure on [0,00)? \ {(0,0)} which is ho-
mogeneous i.e. for a >0

v(aA) = a tv(A) (2)
where a A is the set obtained by multiplying all elements of A by a.

2. We need estimators 41,92, d1 (%) , Q9 (%) ,131 (%) ,62 (%) such that for
some sequence k = k(n) — oo, k/n — 0,n — oo,

Vi (7 o a(E) () Zb) (%)> _ (0n(1),00(1), 00 (1)
a; E a; E

for + = 1,2. There are several known estimators with this behaviour
under suitable second order extreme value conditions on F'.

3. Cp is open and there exists (v,,wy,) € 9C, such that (—oo,v,] X
(—oc,w,] N Cp = 0.

4. The set
S =



in ]R?F does not depend on n where

en =V + 12

Further: S has positive distance from the origin and v(9S) = 0.
Note that (3) implies that (gn/cn,m™n/cn) € 0S. Hence g/, does
not depend on n. We suppose 0 < g,/r, < oo. We require that
¢n — 00, n — co. Moreover (cf. Condition 1) as n — oo

P(Cn) =
1/m 1/72
X — by (2 Y — by (2
P 1+71# , 1+72# € cpS
a1 (3) a2 ()
k k
~ EV(CTLS) == EV(S) .

This can be guaranteed by a proper second order condition on the
probability distribution.
5. 71,72 > —1/2 and

lim Wy Aya (Cn)

=0
n—oo \/E

where

T
woy(z) := xw/ 57 llogs ds .
1

Write p, := P(C,). Our estimator p,, for p, is more or less the tradi-
tional one.

Define (with the convention 0'/% = 0 regardless the sign of ;)

o /%
n_b 7
Gn 1= (1 + 4k L(’“))

i (7)
( ))W ®)

. ~ wn_(;
= 1+y—Fex"
a2(

)

ES SR
=3



and

A 1/%1 2 1/%2
1 A:v—i—bl(%) 1 Ay—bg(%)
— | 1+nn—Fn" s |1+ e——F0n
{ o ( () G\ () (6)

(z,y) € Cn} )

Then we define

We shall prove
Theorem 1.1. Under Conditions 1-5 with p, as in (7)

as n — oo, provided v(S) > 0.

Remark 1.1. The condition v(S) > 0 can be violated under asymptotic
independence in (1). In that case a similar statement with similar proof
applies under the Ledford and Tawn (1997) condition. We omit the details.

Remark 1.2. Note that Gn,7n, Sn,Pn may not be defined if 1 + 1(X; —
by (n/k))/a1(n/k) <0 for some X; and similarly with the second component.
However when checking the proofs one sees that when n — oo, the probability
that this happens tends to zero.

2 Proof of Theorem 1.1

The proof of the Theorem will follow from three analytical lemmas and four
propositions.

Lemma 2.1. Let fp(x) and g, (z) be strictly increasing continuous functions
for all n, lim, o fn(z) =z and lim,_,o gn(z) = = for £ > 0. For an open
set O let

Oy = {fn(x)agn(y) : (‘/an) € O}



Then
10, (2, Y) == Y @yeony = 1o(2,Y) == i@y
for (z,y) € O.

Proof. Take (z,y) € O and ¢ > 0 such that (z — e,y —¢) € O. For n > ny
we have f(z) >z —¢e and g5 (y) > y —e. Hence (f (z),95 (y)) € O for
n > ng. It follows that

Lo (fa (€),gn (y)) = 1

for (z,y) € O. Now

(2,9) € On & (fy ()9, (¥)) €0 & 1o (fy (7). 9, (v) = 1.
Hence the conclusion. Ol

Lemma 2.2. For all real v and z >0

. o) v
nllﬁlglO 1+’Y (1+01(1))W+03(1) =

where the three o;-terms are not necessarily the same.

Lemma 2.3. For all real v and x > 0, with v, — v and ¢, — oo(n — o),

n—00 Cp,

lim (1 + Yn {(1 + O1(7m — 1)) (Cnx)# + O2(7m —7)})1/% =z

provided

Cn
lim (v, — 'y)cnw/ 7 1logsds =0. (8)
1

n—oo

Proof. For v # 0 the left hand side can be written as

1 1/’Yn
- [(cnmﬁ T (en)? Os(m —7) + Oaliyn — w]
_ (cnm)v/% B _, - 1/

———— 1+ O1(yn =) + (cnz) 7 O2(vn — )

Cn

We deal with the two factors separately. Note that (8) implies

(vn — ) loge, =0 Lif v>0
(Yo =Y =0 Lif ¥<0,
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hence whatever the value of v #£ 0
(' —7)e,” =0 and (v, —7y)loge, =0, n—o0.

The result follows for v # 0.
Next consider v = 0. We prove that the inverse function of the left hand
side converges to the identity:

éeXP [(1 + O1(n —7)) (cnm)y% + O2(yn — 7)]
= wexp (140160 =) (L2 g )

+01(yn — 7) log(cnz) + Oa(yn — 7)] :

Now note that

(cpx) —1

Tn

—log(cpz)

< [Ynl (en m)W"‘ log?(cnz)

/ / y du ds

The proof is completed by noting that (8) implies 7, log? ¢, — 0,n — oo, if
v =0. O

Next we introduce some transformations.

1/m 1/7v2
b (2 b (2
Ry(z,y) = <1+71_xa1 (lg()k)> a<1+727y Q(k)>
k

az (%)
o omy\ U Cr oy U
a1 (E) az E)
1
Qn(z.y) = C_Rn(may)
~ 1 R
Qn(z,y) = é—Rn(m,y),



Proposition 2.1. Let S be an open Borel set in R% with v(S) > 0,v(dS) =
0 and with positive distance from the origin. Suppose Condition 1 holds.

Define
" R () (o))

1 n
= 22 Uraxives)
i=1

Then with k satisfying k = k(n) — oo, k/n — 0, as n — oo,
Un(S) = v(S9).

Proof. By Condition 1 we find easily
it v(S)

lim Eeitm(S) — ¢
n—rod

for all ¢. U

Proposition 2.2. Let S be as in Proposition 2.1. Suppose that Condition
1 holds and there are estimators (%,dl(n/k),i)l(n/k)) such that

(’A)’z -7 0 (g) -1, ?)Z (%) _nbi (%)) £> (0,0,0) (9)
ai () ai ()

fori=1,2 as n — oo (the latter follows from Condition 2). Define

1 n
p(S) = - 1 A . . .
(%) k ; { <<1+% Xifbl(%)ym,(lﬁa Yiib(Z,g)%)>l/72) es}
a ag\ ¢
1 n
= Egl{m(x,y)es} :

Then as n — oo



Proof. First invoke a Skorohod construction so that we may pretend that the
left hand side of (9) converges to zero almost surely and that 2, (S) — v(S)
almost surely. Note that

) 1<
n(S) = z > Leevyers (s)
=1

1 n
I Z 1{Rn(X,Y)€Rn Re(9)}
i=1

= D(Sn)
with X A
Sn = By Bi(8) = { Ry R (3,9) : (5,9) € 5} .
Now
1/’71
. L e - by () — by (2
R () = (10 |22 =1 b () — b (§) ,
a (}) % ar ()
i (@)1 h@-n@®])""
3 1+72 n N n 3
az (§) % az (%
hence we have by Lemma 2.2
Ry R (z,y) — (z.y) (10)

for z,y > 0 a.s. and hence by Lemma 2.1
an R;(S)(may) - IS(xay) (11)

for all (z,y) € S as.
Further since S has positive distance to the origin, there are s > 0 such
that
Sci{(z,y):x>s or y>s}=:D.

Define for 0 <e < s
D, :={(zx—¢e,y—c¢):(z,y) € D} .
and (fp (), gn(z)) := Ry R (2,y). By Lemma 2.1 for n > ng

fa(s)>s—¢e and gn(s) >s—ce.



Since S C D, (z,y) € S implies z > s or y > s hence f,(z) > fn(s) or
In(y) > gn(s). Tt follows that for n > ng

{(fn(@),9n(y)) : (z,y) € S} C (=00, fu(s)] X (—00,gn(s)])°

C ((—o0,s8 — €] x (—o0,s —¢])° = D, ,

(12)

1.e.
1 <l1p, .

Ry R (S)

Next define the measure v* by
o
v = Z 27",
n=0

with the convention that 7y := v. Let h, be the density of #, with respect

to v*. We know from Proposition 2.1
/hndl/* =up(S) = v(S) = / hodv*  a.s.
s 5

Finally from Lemma 2.1, Proposition 2.1, (12), (13) and Pratt’s (1960)

(13)

lemma

o(S) = o, (Rn R;(S)) - / 15, hndv* — /lshgdu* = u(S)

a.s. hence in probability.
Proposition 2.3. Under the conditions of the theorem

Cn P
251 as n—oo.
Cn

Proof. Recall ¢;, = \/¢2 + 12 and ¢, = \/¢2 + 72. Now by (4) and (5)

; /%
— by (n
Gn = (14—’?1—”"&1 (lﬂgk)>
k
. 1/4
(s fa@a -1 n@ - @)
a(F) m a (3)
Then from Lemma 3.1 )
In P



Similarly
Tn 5
Tn
The results follows. O

Proposition 2.4. Under the conditions of the theorem
(A P
o (Qn Q5 (5)) B 0(S) .

Proof. Invoke a Skorohod construction so that we may pretend that (cf.
Condition 2)

~

D (S) = v(S), 51,

Cn

o ai(R) b)) b (R
\/E<’71 ’Yua. % 15 ]

for i = 1,2 as n — oo almost surely. Then by Lemma 3.1

Qn Q5 ((,9)) = ((z,y))

for all (z,y) € (0,00)? a.s. Then from Lemma 2.1

15, 0c(s)((z:9) = 1s((,y))

for all (z,y) € S almost surely. The rest of the proof is similar to that of
Proposition 2.2. ]

Proof. (of Theorem 1.1)
We have by Condition 4 as n — oo
k
pn = P(C) ~ —v(S) .

ney,
Hence by Proposition 2.3 and Proposition 2.4

_ ~ — = 1.
Pn N Cp Pn V(S) Cn

10



3 Result in function space

Example: During surgery the blood pressure of the patient is monitored
continuously. It should not go below a certain level and in fact this has
never happened in previous similar operations. What is the probability that
this happens during surgery of a certain kind?

First a short reminder of extreme value theory in C[0, 1] (cf. de Haan
and Lin (2001, 2003); Einmahl and Lin (2003)). It is quite similar to the
finite-dimensional case. Let X, X7, Xs,... be 1.i.d. continuous stochastic
processes on [0,1]. We define the maximum of n such processes M, as an
element of C[0,1]:

M,(s) = max Xi(s) for 0<s<1.

We consider possible limit distributions of M,,, linearly normalized, as n —
0o. The limit distribution is characterized by two elements: a function
v € C]0,1], the extreme value index function, and a measure v which is
homogeneous of order —1. Write

| :=sup{f(s): s €[0,1]} .
The domain of attraction condition is: for each Borel set
Ac{feco1]:f=0}
with
v(0A) =0, inf{|f|: fe A} >0,
lim —P{R,X € A} = v(A)

n—oo k

for some k = k(n) — oo, k/n — 0, where for 0 < s <1

ay \ 1/7(s)
R,X(s) := (1 + 7(3)%2‘;(’“_)) .

k

The functions as(n/k) > 0 and bs(n/k) are suitable continuous normalizing
functions.

Next we suppose that we have a failure set C,, with Px(C,) = O(1/n)
and a sample X1, Xo,..., X, € C[0,1]. We want to estimate Px(Cy).

Our conditions are quite similar to those in Section 1:

1. The domain of attraction condition.

11



. Estimators 4(s), as(n/k) , bs(n/k) such that with some sequence k =
=0

k(n) — oo, k(n) (n),n — oo,
sup (\/E (s Gs E
0<s<1 E

. Cp is open in C[0,1] and there exists h,, € 9C,, such that

f<hy=f&C,.

. (Stability property) We require

ny (enf(s))7) — n
C{( () f(v)();) S (k))se[ouzfes}

where S is a fixed set in C]0, 1] with

e f>0 for feS
v(0S) =0 and inf{|f|: f€ S} >0

cp = sup |1+ (s
ni= sup ( v(s) 0 (2)
. Sharpening of Condition 1:

n P{R,(X) € c,S} P

kv{cn, S} 1
. With v := info<<17(s) :
and
lim wl(cn) 0.
n—oo  /k

Finally we define the estimator p, for p, := P{C,}:
- L
== a 2 {Bn(X)eSn}

12

hn(S) _ bs (%)>1/’Y(5) |

)



where

Sy \ 1A(s)
o (ro )
0<s<1 as (%)
S oy \ L/AGs)
Rof(s) := (1 —i—’y(s)f(sé_(l;s)(%)) for 0<s<1
s (%

and 1

Cn,
Remark 3.1. Note that ¢, is not defined if

B (s) — bs (2
(s n(SA) ns (k) S 0
as (%)
for some s € [0,1]. However when checking the proof one sees that when
n — o0, the probability that this happens tends to zero.

Theorem 3.1. Under our conditions
Pn Ky
Dn

as n — oo provided v(S) > 0.

The proof of Theorem 3.1 follows from three lemmas and four proposi-
tions. The proofs are very similar to the ones in Section 2 and will be mostly
omitted.

Lemma 3.1. Let Gy, be an increasing and invertible mapping: C[0,1] —
C[0,1]. Suppose that li_)m Gnf = f in C[0,1] for all f € C[0,1]. For an
n—oo
open set O let
O, :={G,f: f€O}.

Then for all f € O

lo,(f) == 1{se0,y = Llo(f) =10y -
Lemma 3.2. For allz >0

. (s-oa(1) _ 1 o
tin (1490 0o SEEaR o) s,

uniformly for 0 < s < 1, provided 7y is a continuous function on [0,1] and
the o-terms tend to zero uniformly in s.

13



Lemma 3.3. For all x > 0 and ¢, — oc

lim - (1 + Tn(s) {(1 + O1 (7 (s) —(s)))

L/n(s)
+02('7n(3)_'7(3))}) =z,

uniformly for 0 < s <1, provided v, and 7y are continuous functions,
sup |y (s) —7(s)| =0
0<s<1

and

lim sup |yn(s) — y(s)] c; 7 / RO logs ds=0.
1

n—oo OSSSI

Proposition 3.1. Let S be an open Borel set in {f € C[0,1] : f > 0} with
v(S) > 0,v(9S) = 0 and such that

inf{|f|: feS}>0.
Suppose Condition 1 holds. Define
1 n
on(S) = > r.xes) -
=1
Then as n — oo

. P
Up(S) = vp(S) .
Proposition 3.2. Assume the conditions of Proposition 3.1. Let %(s),

as(n/k) , bs(n/k) be estimators such that

P

sup [§(s) —y(s)| = 0
0<s<1

a. (2
sup as(ﬁ) —1 £>0
0<s<1 | Qs (E)
o [@ -0 @) 5,
0<s<1 as (%)

Define

5 ¢
7n(S) = 7D ih,xes) -
i=1

14



Then as n — oo

n(S) 5 v(S).

Proof. Invoke a Skorohod construction so that we may assume that in virtue
of Lemma 3.2
R, R,” — Identity a.s.

Write
c:=inf{|f|: feS}>0.

For all 0 < ¢y < ¢ it holds that f € S = there exists a s € [0,1] such that
f(s) > co.

Take ng such that for n > ng
€0

RnR;;_CO > 5

Then for each f € S there exists s € [0, 1] such that

R,RS f(s) > RuRSco > %0 )

Hence
{RHR;f:feS} c {f:ngnR;co}
Cco) ¢
<= =
c {r:r<3} =0
i.e.
Tk, ki (s) < 1n

Now

Un(De) — v(Dy)
by Proposition 3.1. Hence as in the proof of Proposition 2.2

D (RnR;(S)) = u(S)
almost surely hence in probability. U

Proposition 3.3. Under the conditions of the theorem

as n — 00.

15



Proof. Write for 0 < s <1

Then

Hence, since the expression inside the curly brackets tends to one in proba-
bility uniformly in s by Lemma 3.3, we have

¢ c P
Cn sup 7,(s)
0<s<1

Proposition 3.4. Under the conditions of the theorem

1 -
D <A—Rn R;(cn5)> 5 un(S) .

Cn
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