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Chapter 1: Limit Distributions and Domains of
Attraction

1/2 _ loglogn+tlog(4m)

Page 12, line 14, correction: b., = (2logn) 53 Tog m)1/2

Chapter 2: Extreme and Intermediate Order Statis-
tics

Page 42, line 10, correction: vk (M% - 1).

Chapter 3: Estimation of the Extreme Value In-
dex and Testing
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Page 77, line 6, correction: ( p%z
Page 111, line 7, correction: Then (3.6.5) multiplied by f(¢) becomes (...)

line 10, correction: and (3.6.6) multiplied by f(t) becomes

Chapter 4: Extreme Quantile and Tail Estima-
tion
Page 128, Fig.4.2(b) label vertical azxis, correction: log(1l + yx)/v

Page 134, line -12, addendum: Theorem 4.3.1 (de Haan and Rootzén
(1993))

Page 138, line 10, addendum: Theorem 4.3.8 (Dijk and de Haan (1992))

Page 148, Sect. 4.6.1. Simulations, correction: (...) p, = 1/(nlogn) = 1.448x
10=* (...) n = 1000 (yet p, = 1.086 x 10~* for the Cauchy distribution,
which indeed corresponds to 2931.7 in Fig. 4.4)



Table 4.1. Sea level data: 95% asymptotic confidence intervals for quantile.

Page

k 100 200 300

Moment (350, 1029.) (419., 1015.) (454, 988.)
PWM  (299., 1017.) (372., 1049.) (411, 1018.)

151, Table 4.1, correction:

Table 4.2, clarification: ”3rd Quantile” is the same as 70.75 Quan-
tile”.

Chapter 6: Basic Theory (in higher dimensional
space)

Page

Page

Page

213, Theorem 6.1.9, correction:
Theorem 6.1.9 For any Borel set A C RS with inf (, )4 max(z,y) > 0
and any a > 0, (...)

217, Definition 6.1.13, reformulation:
Definition 6.1.13 A distribution function G is called maz-stable if there
are constants A, > 0, C,, > 0, B,, and D,, such that for all z,y and
n=12,...,

G"(Apz + By, Cry + Dy) = G(z,y).

Any distribution function G satisfying (6.1.25) is max-stable (cf. (6.1.28)),
and also G(azx + 3,7y + 6) where a > 0, v > 0, 3, and § are arbitrary
real constants. Since any max-stable distribution is in the class of limit
distributions for (6.1.1), we get all the max-stable distributions (i.e. the
class of limit distribution functions G) this way. The class of limit dis-
tribution functions Gg in (6.1.10) is called the class of simple maz-stable
distributions, “simple” meaning that the marginal distributions are fixed
as follows: Go(x,0) = Go(o0,z) = exp (—=1/z), z > 0.

231, Ezercise 6.2, reformulation:
6.2. (...) converges to

9(z,y) =27 og(A/(4m)) — (4N =Mz —y)* =27 (z +y)

for z,y € R. Conclude that

lim n (1 - F,(apx + by, any +b,)) = // g(s,t) dsdt,
{s>z}u{t>y}

n—roo
for z,y € R.

Exercise 6.3 (d), addendum: with tA~! = {(%, %) , (z,y) € A}



Page 232, Ezercise 6.6, addendum:
6.6. (...) H'(6) = r3q(0r,r(1 —0)) = q(0,(1 — 8)) (cf. Coles and Tawn
(1991)).

Exercise 6.11, reformulation:

6.11. Let (V4,V5,...,Vy) be independent and identically distributed ran-
dom variables with distribution function exp—(1/z), z > 0. Let
{rij}i=1,2,j=1,...4 be a matrix with positive entries. Show that the ran-
dom vector (V_,71,;Vj, Vi_,72,;V;) has a simple max-stable distribution.
Find the distribution function. Show that any two dimensional distribu-
tion function with Fréchet marginals can be obtained as a limit of elements
in this class.

—a —a
Ezercise 6.12, correction: exp — <(>\i1 A l) + (% A l) )

New Ezercise:
6.14. Let (X,Y) have a standard spherically symmetric Cauchy dis-
tribution. Show that the probability distribution of (]X|,|Y]) is in the
domain of attraction of an extreme value distribution with uniform spec-
tral measure ¥. Show that the probability distribution of (X,Y") is also
in a domain of attraction. Find the limit distribution.

Chapter 7: Estimation of the Dependence Struc-
ture

Page 268, Ezercise 7.3, correction:

EW (21, xa)W (Y1 ya) = p(R(z1, - 2a) N R(y1, - -, ya))

Page 269, Ezercise 7.4, correction:
7.4. (...), and N indicates a normal probability distribution.

Chapter 9: Basic Theory in C|0, 1]

Page 306, lines 7T—19, correction: These lines should be indented, as they be-
long to part (2) of the proof.

line 11, addendum: First we note that this assumption implies

Page 308, Example 9.4.6, reformulation:
Example 9.4.6 A nice example of a simple max-stable process has al-
ready been given by Brown and Resnick (1977). Let W* be two-sided
Brownian motion:

g e d W), 520
W(S)'_{W_(—s), s<0
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where W and W~ are independent Brownian motions. For the inde-
pendent and identically distributed processes {V;}32; of Corollary 9.4.5

take *
{Vi(s)}ser = {eWi (3)—\3|/2}

where the W/ are independent Brownian motions, i.e.,

{n(s)}ser == {\/ Z; eWi*(s)—3|/2} ’
seR

i=1

sER

where {Z;}3°, is a realization of a Poisson point process on (0, 00] with
mean measure dr/r? and independent of {W;}7~ . The process 7 is sta-
tionary (cf. Section 9.8 below).

311, line -5, addendum: Theorem 9.5.1 (de Haan and Lin (2001))
315, line 3, correction: (...) supg<s<; fs(t) = c for all ¢ € [0, 1].

line 5, addendum: Theorem 9.6.1 (Resnick and Roy (1991)
and de Haan(1984))

Section 9.6.2 Stationarity, addendum: An extension of the results of
this section to ¢ € R is in the Appendix bellow.

323, Section 9.8 Two Examples, reformulation:
9.8 Two Examples Let us go back to Example 9.4.6 of Section 9.4 (with
the aforementioned correction). Let W* be two-sided Brownian motion,

w | WH(s), 5>0
W(s) '_{ W (-s), s<0

where W+ and W~ are independent Brownian motions. Then consider

n(s)}ser = {\/ Zl.ve(s)ls/2} @

seR

where {Z;}5, is a realization of a Poisson point process on (0, oc] with
mean measure dr/r? and independently, {IW;}>Z, is a sequence of inde-
pendent two-sided Brownian motions.

Then, to check that the process is stationary just follow the same calcu-
lations from pages 323 to 325 with W replaced by W*.

324, line -5, correction:
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Page 326, Example 9.8.1, reformulation:
Example 9.8.1 Let Y be a random variable with distribution function
1—1/z, 2 > 1. Let W* be two-sided Brownian motion,

iy [ WHs), s>0
w(s) '_{ W=(-s), s<0

where W* and W~ are independent Brownian motions. Let Y and W*
be independent. Consider the process (... follow the rest of the example
with W replaced by W*).

line -14, correction: (...) For a > 1 (...)

Ezample 9.8.2, reformulation:
Example 9.8.2 (Extension of Brown and Resnick (1977)) Let
{X(s)}ser be a Ornstein-Uhlenbeck process, i.e.,

X(s) = lgsope <N+/ e“/QdW+(u))

0
+1gscope’/? <N+/ e“/QdW_(u)>
0

with N, W+ and W~ independent, N a standard normal random variable
and W7 and W~ standard Brownian motions. Since for s # ¢ the random
vector (X (s), X (t)) is multivariate normal with correlation coefficient less
than one, Example 6.2.6 tells us that, relation (9.5.1) can not hold for any
max-stable process in C[0,1]: since Y has continuous sample paths, Y'(s)
and Y (¢) can not be independent. Hence we compress space in order to
create more dependence, i.e., we consider the convergence of

{vb (x: () - b)} ©)

seR

in C[—so, so] for arbitrary so > 0, where X, X5, ... are independent and
identically distributed copies of X and the b,, are the appropriate normal-
izing constants for the standard one-dimensional normal distribution, e.g.,
b, = (2logn — loglogn — 10g(47r))1/2 (cf. Example 1.1.7). Then

S
b (x (i) ) -
) Is1/b2 )
=191/22) [ (N = b)) + b / /21 (u) + (1 - /) 32
0

where W*(s) is W+(s) for s > 0 and W—(s) for s < 0. Note that
uniformly for |s| < sq,

e 151/28) 1 4 0 (l) _

b



Further, since e*/2 =1+ O (1/b2) for |u| < so/b2,

/8 w/?2 + 1 + (sl
bn ; e 2dW=(u)= (140 % b, W g .

Finally, for |s| < sq,

(1-elve)e = Bl o (bl) |

n

It follows that
S
n(x () )
_ 1 _ + (181 _ sl 1
= <1+O<b%>><bn(N by) + b, W <b%> 5 +0 2 )

We write W*(|s|) := b, W= (|s|/b2). Then W* is also Brownian motion.
We have

(Vo (x(3) )]

2

Hence the limit of (2) is the same as that of

i=1

{\/ (bn (N = bn) + W7 () - %} . 3)
sER

The rest of the proof runs as in the previous example.

One finds that the sequence of processes (3) converges weakly in C[—sg, so],
hence in C(R), to

{\/ 08 2, + Wy (s)) - %} R

i=1
with {Z;} the point process from (9.8.1).
Note that the point process {Z;} and the random processes W} are inde-

pendent.

Page 328, Exercise 9.5, correction:
9.5. (...) V is a continuous stochastic process independent of Y (...)

P(f(s)>x):£/0xP(V(s)>u)du, z>0.

()



Chapter 10: Estimation in C]0, 1]

Page 332, line -2, addendum: Theorem 10.2.1 (de Haan and Lin (2003))
Page 339, line -3, addendum: Theorem 10.4.1 (de Haan and Lin (2003))

Page 341, line -3, correction:

(n 1 >.U(s) /’00 () 1
(2 — (1= Gps(z)) 2" do
k Cnekon(s) (k/7)Cn—ksn (5)

Page 352, line 6, correction:

n(S) = v(S) .

Appendix B: Regular Variation and Extensions

Page 366, line 5, correction: exp (ftto a(v) ﬂ)

v

Page 380, line 9, correction:

(1_52)1__£_52<M<(

z0
(51 a(t) )

-1
T+62

1+ 99
Page 381, line -8, addendum:
(4) From part (3) of the present proposition it follows (...)
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Appendix: Extension of Section 9.6.2 Stationar-
ity
Corollary 9.6.7.A Let {(Z;,T;)}3°, be a realization of a Poisson point process

on (0,00] x R with mean measure (dr/r®) x d\ (\ Lebesgue measure). If n is

a simple maz-stable process in CT(R), then there ewists a family of functions
fs(t) (s,t € R) with

1. for each t € R we have a non-negative continuous function fs(t) : R —
[0,00),
2. for each s € R

“+o00o
/ fuydt=1, (4)

— 00

3. for each compact interval I C R

“+o00o
/ sup fs(t) dt < oo,

—oo s€l

such that

{n(s)}ser = {\/ Z; fs(Ti)} . (5)

sER

Conversely every process of the form exhibited at the right-hand side of (5) with
the stated conditions, is a simple maz-stable process in C*(R).

Proof. Let H be a probability distribution function with a density H’, that
is positive for all real . With the functions f; from Theorem 9.6.7 define the
functions fs(t) :== fs (H(t)) H'(t). Since for any s1,...,5¢ € Rand z1,...,2q €

R positive,
+00 f 1
(T (T
/ max —fs’( ) dt :/ max —fsl( ) dt ,
oo I<i<d  m; o 1<i<d  x;
the representation of the corollary follows easily from that of Theorem 9.6.7.

Definition 9.6.9.A A mapping ® from L (the non-negative integrable
functions on R) to L is called a piston if for h € L}

@ (h(t)) = r(t)h (H(?))

with H a one-to-one measurable mapping from R to R and r a positive measur-
able function, such that for every h € L}

/+°o & (h(t)) dt = /+Oo h(t) dt .

— 00 — 0o



Theorem 9.6.10.A Let {(Z;,T;)}2, be a realization of a Poisson process
on (0,00] x R with mean measure (dr/r?) x d\ (\ Lebesgue measure).

If the stochastic process {n(s)}secr is simple maz-stable, stricly stationary
and continuous a.s., then there is a function h in L with fj;o h(t)dt =1 and
a continuous group of pistons {®s}ser (continuous i.e., ¥4 (h(t)) = ®5(h(t))
as sp, — s for almost all t € R) with

+oo
/ sup &, (h(t)) dt < oo
—oo s€l

for each compact interval I, such that

{n(s)}seR g {\/ Zi (I)s (h(Tz))} . (6)

sER

Conversely every stochastic process of the form exhibited at the right-hand
side of (6) with the stated conditions, is simple maz-stable, strictly stationary
and a.s. continuous.

Proof. Just replace everywhere in the proof of Theorem 9.6.10, t € [0, 1] by
te R



